Simulink[®] Real-Time™ Reference

MATLAB&SIMULINK®

R2019**a**

How to Contact MathWorks

Latest news:	www.mathworks.com
Sales and services:	www.mathworks.com/sales_and_services
User community:	www.mathworks.com/matlabcentral
Technical support:	www.mathworks.com/support/contact_us
Phone:	508-647-7000

The MathWorks, Inc. 1 Apple Hill Drive Natick. MA 01760-2098

Simulink[®] Real-Time[™] Reference

© COPYRIGHT 2002-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

=	
March 2007	Online only
September 2007	Online only
March 2008	Online only
October 2008	Online only
March 2009	Online only
September 2009	Online only
March 2010	Online only
April 2011	Online only
September 2011	Online only
March 2012	Online only
September 2012	Online only
March 2013	Online only
September 2013	Online only
March 2014	Online only
October 2014	Online only
March 2015	Online only
September 2015	Online only
March 2016	Online only
September 2016	Online only
March 2017	Online only
September 2017	Online only
March 2018	Online only
September 2018	Online only
March 2019	Online only

New for Version 3.2 (Release 2007a) Updated for Version 3.3 (Release 2007b) Updated for Version 3.4 (Release 2008a) Updated for Version 4.0 (Release 2008b) Updated for Version 4.1 (Release 2009a) Updated for Version 4.2 (Release 2009b) Updated for Version 4.3 (Release 2010a) Updated for Version 5.0 (Release 2011a) Updated for Version 5.1 (Release 2011b) Revised for Version 5.2 (Release 2012a) Revised for Version 5.3 (Release 2012b) Revised for Version 5.4 (Release 2013a) Revised for Version 5.5 (Release 2013b) Revised for Version 6.0 (Release 2014a) Revised for Version 6.1 (Release 2014b) Revised for Version 6.2 (Release 2015a) Revised for Version 6.3 (Release 2015b) Revised for Version 6.4 (Release 2016a) Revised for Version 6.5 (Release 2016b) Revised for Version 6.6 (Release 2017a) Revised for Version 6.7 (Release 2017b) Revised for Version 6.8 (Release 2018a) Revised for Version 6.9 (Release 2018b) Revised for Version 6.10 (Release 2019a)

Contents

Configuration Parameters

	ulink Real-Time Options PaneConfiguration
	Tips
	To get help on an option
ui	ld for default target computer
	Settings
	Dependency
	Command-Line Information
	See Also
pe	cify target computer name
-	Settings
	Tip
	Dependencies
	Command-Line Information
	See Also
ut	omatically download application after building
	Settings
	Command-Line Information
	See Also
laı	ne of Simulink Real-Time object created by build process
	Settings
	Tip
	Command-Line Information
	See Also
Jse	e default communication timeout

Dependencies	1-9
Command-Line Information	1-9 1-9
See Also	1-9
Specify the communication timeout in seconds	1-10
Settings	1-10
Tip	1-10
Dependencies	1-10
Command-Line Information	1-10
See Also	1-10
Execution mode	1-11
Settings	1-11
Command-Line Information	1-11
Real-time interrupt source	1-12
Settings	1-12
Tips	1-12
Command-Line Information	1-12
I/O board generating the interrupt	1-13
Settings	1-13
Command-Line Information	1-13
PCI slot (-1: autosearch) or ISA base address	1-15
Settings	1-15
Tip	1-15
Command-Line Information	1-15
See Also	1-15
Monitor Task Execution Time	1-16
Settings	1-16
Command-Line Information	1-16
See Also	1-16
Signal logging data buffer size in doubles	1-17
Settings	1-17
Tips	1-17
Command-Line Information	1-17
Double buffer parameter changes	1-19
Settings	1-19
Tips	1-19

Command-Line Information	1-19
Load a parameter set from a file on the designated target file	
system	1-20
Settings	1-20
Dependencies	1-20
Command-Line Information	1-20
See Also	1-20
File name	1-21
Settings	1-21
Tip	1-21
Dependencies	1-21
Command-Line Information	1-21
Generate INCA/CANape extensions (disables the Simulation	
Data Inspector and Dashboard blocks)	1-22
Settings	1-22
Command-Line Information	1-22
See Also	1-22
Enable Stateflow animation	1-23
Settings	1-23
Command-Line Information	1-23
See Also	1-23
Arm when connecting to target	1-24
Settings	1-24
Command-Line Information	1-24
See Also	1-24

TLC Options Parameters

TLC	Command-Line Options
	xPCMaxOverloads
	xPCMaxOverloadLen
	xPCStartupFlag
	xPCModelStackSizeKB
	xpcCPUClockPoll

SLRTFTZOFF		2-5
------------	--	-----

Simulink Real-Time Explorer

Simulink Real-Time Explorer Instrumentation

Instrumentation for Real-Time Applications	4-2
Instrument Selection and Binding	4-5
Display Instruments	4-5
Tuning Instruments	4-7
Layout Elements	4-9
Graphical Properties	4-11
Explorer Configuration Exported to Run Outside MATLAB	4-17
Execution Environment	4-17
Signal Groups	4-18
Parameter Groups	4-18
Instrument Panels	4-18
Window Layout	4-1
Limitations as Standalone Executable	4-1
View Signal Waveforms with Scope Instrument	4-2
Create Instrument Panel	4-2
Configure Slider Instrument for Parameter Tuning	4-2
Configure Scope Instrument with Default Triggering	4-2
Run Instrumented Model	4-2
View Signal Waveforms with Signal Triggered Scope	
Instrument	4-2
Preconditions	4-2
Configure Scope Instrument	4-2
Run Instrumented Model	4-2
Add Instrument Panel to Tank Model	4-3

3

Save Environment Properties	4-45
Save and Load Instrument Panels	4-46
Save and Restore Layouts	4-47
Prepare Explorer Environment for Export	4-48
Prepare Instrument Panel Configuration for Export	4-50
Export Explorer Configuration	4-53
Unpack and Run Standalone Configuration	4-55

Simulink Real-Time Explorer Instruments

Target Computer Command-Line Interface Reference **6**

Target Computer Commands	
Target Object Function Commands	(
Target Object Property Commands	
Scope and Video Object Function Commands	
Scope Object Property Commands	
Aliasing with Variable Commands	6

Simulink Real-Time Performance Advisor Checks

7

Simulink Real-Time Performance Advisor Checks	7-2
To get help on an option	7-3
See Also	7-3

Baseline	7-4
See Also	7-4
System Target File Compatibility	7-5
See Also	7-5
Profiling Settings	7-6
See Also	7-6
Check Target	7-7
See Also	7-7
Real-Time Performance Baseline	7-8
See Also	7-8
Determine minimum sample time	7-9
See Also	7-9
Real-Time	7-10
See Also	7-10
Outport Logging	7-11
See Also	7-11
EtherCAT Synchronous SDO	7-12
See Also	7-12
Concurrent execution	7-13
See Also	7-13
Final Validation	7-14
See Also	7-14

Configuration Parameters

Simulink Real-Time Options Pane

Parameter	Description
"Build for default target computer" on page 1-5	Direct Simulink Coder™ to download the real-time application to the default target computer.
"Specify target computer name" on page 1- 6	Specify a target computer name for your real-time application.
"Automatically download application after building" on page 1-7	Enable Simulink Coder to build and download the real-time application to the target computer.
"Name of Simulink Real-Time object created by build process" on page 1-8	Enter the name of the target object created by the build process.
"Use default communication timeout" on page 1-9	Direct Simulink Real-Time software to wait 5 (default) seconds for the real-time application to be downloaded to the target computer.
"Specify the communication timeout in seconds" on page 1-10	Specify a timeout, in seconds, for an attempted communication with the target computer.
"Execution mode" on page 1-11	Specify execution mode of downloaded code.
"Real-time interrupt source" on page 1-12	Select a real-time interrupt source from the I/O board.
"I/O board generating the interrupt" on page 1-13	Specify the board interrupt source.
"PCI slot (-1: autosearch) or ISA base address" on page 1-15	Enter the slot number or base address for the I/O board generating the interrupt.
"Monitor Task Execution Time" on page 1- 16	Monitor task execution times and append the results to the target object property tg.TETlog.
"Signal logging data buffer size in doubles" on page 1-17	Enter the maximum number of sample points that the software stores before wrapping.

Parameter	Description
"Double buffer parameter changes" on page 1-19	Use a double buffer for parameter tuning. This setting enables parameter tuning so that the process of changing parameters in the real-time application uses a double buffer.
"Load a parameter set from a file on the designated target file system" on page 1- 20	Automatically load a parameter set from a file on the designated target computer file system.
"File name" on page 1-21	Specify the target computer file name from which to load the parameter set.
"Generate INCA/CANape extensions (disables the Simulation Data Inspector and Dashboard blocks)" on page 1-22	Enable real-time applications to generate data, such as A2L data, for Vector CANape [®] and ETAS [®] Inca.
"Enable Stateflow animation" on page 1- 23	Enables visualization of Stateflow [®] chart animation.

Control the code created by Simulink Coder code generation software for a Simulink Real-Time application. Set up general information about building real-time applications, including target, execution, data logging, and other options.

Configuration

The **Simulink Real-Time Options** node in the Configuration Parameters dialog box allows you to specify how the software generates the real-time application. To reveal the **Simulink Real-Time Options** node, do the following:

1 In the **Code Generation** pane, in the **System target file** list, select slrt.tlc. This setting generates system target code for Simulink Real-Time.

Note If you open a model that was originally saved with **System target file** set to xpctarget.tlc, the software updates the setting to slrt.tlc. To retain the updated setting, save the updated model.

2 Select C for the Language parameter on the code generation pane.

Tips

- The default values work for the generation of most real-time applications. If you want to customize the build of your real-time application, set the option parameters to suit your specifications.
- To access configuration parameters from the MATLAB® command line, use:
 - gcs To access the current model.
 - **set_param** To set the parameter value.
 - get_param To get the current value of the parameter.

To get help on an option

- **1** Right-click the option text label.
- 2 From the context menu, select What's This.

Build for default target computer

Direct Simulink Coder to download the real-time application to the default target computer.

Settings

Default: on

🔽 On

Downloads the real-time application to the default target computer. Assumes that you configured a default target computer through Simulink Real-Time Explorer.

🔲 Off

Enables the **Specify target computer name** field so that you can enter the target computer to which to download the real-time application.

Dependency

When cleared, this parameter enables **Specify target computer name**.

Command-Line Information

Parameter: xPCisDefaultEnv Type: character vector Value: 'on' | 'off' Default: 'on'

See Also

"PCI Bus Ethernet Setup"

Specify target computer name

Specify a target computer name for your real-time application.

Settings

. .

Тір

The target computer name appears in Simulink Real-Time Explorer as the target computer node, for example TargetPC1.

Dependencies

To enable this parameter, clear **Download to default target computer**.

Command-Line Information

Parameter: xPCTargetPCEnvName Type: character vector Value: A valid target computer name Default: ' '

See Also

Simulink Real-Time Explorer

Automatically download application after building

Enable Simulink Coder to build and download the real-time application to the target computer.

Settings

Default: on

🔽 On

Builds and downloads the real-time application to the target computer.

🔲 Off

Builds the real-time application, but does not download it to the target computer.

Command-Line Information

Parameter: xPCisDownloadable
Type: character vector
Value: 'on' | 'off'
Default: 'on'

See Also

"Build and Download Real-Time Application"

Name of Simulink Real-Time object created by build process

Enter the name of the target object created by the build process.

Settings

Default: tg

Тір

Use this name when you work with the target object through the command-line interface.

Command-Line Information

Parameter: RL320bjectName
Type: character vector
Value: 'tg' | valid target object name
Default: 'tg'

See Also

"Real-Time Application Objects"

Use default communication timeout

Direct Simulink Real-Time software to wait 5 (default) seconds for the real-time application to be downloaded to the target computer.

Settings

Default: on

🔽 On

Waits the default amount of seconds (5) for the real-time application to be downloaded to the target computer.

🔲 Off

Enables the **Specify the communication timeout in seconds** field so that you can enter the maximum length of time in seconds you want to wait for a real-time application to be downloaded to the target computer.

Dependencies

This parameter enables **Specify the communication timeout in seconds**.

Command-Line Information

Parameter: xPCisModelTimeout
Type: character vector
Value: 'on' | 'off'
Default: 'on'

See Also

"Troubleshoot Communication Timeout with Target Computers"

Specify the communication timeout in seconds

Specify a timeout, in seconds, for an attempted communication with the target computer.

Settings

Default: 5

Тір

Enter the maximum length of time in seconds you want the Simulink Real-Time software to wait for the real-time application to download to the target computer. If the real-time application is not downloaded within this time frame, the software generates an error.

Dependencies

To enable this parameter, set Use default communication timeout.

Command-Line Information

Parameter: xPCModelTimeoutSecs Type: character vector Value: A valid number of seconds Default: '5'

See Also

"Troubleshoot Communication Timeout with Target Computers"

Execution mode

Specify execution mode of downloaded code.

Settings

Default: Real-Time

Real-Time

Executes downloaded code as a real-time application.

Freerun

Executes downloaded code as fast as possible.

Multirate models cannot be executed in Freerun execution mode. On the **Solver** pane in the Configuration Parameters dialog box, clear the check box for **Treat each discrete rate as a separate task**.

Command-Line Information

Parameter: RL32ModeModifier
Type: character vector
Value: 'Real-Time' | 'Freerun'
Default: 'Real-Time'

Real-time interrupt source

Select a real-time interrupt source from the I/O board.

Settings

Default: Timer

Timer

Specifies that the board interrupt source is a timer.

Auto (PCI only)

Enables the Simulink Real-Time software to automatically determine the IRQ that the BIOS assigned to the board and use it.

```
3 to 15
```

Specifies that the board interrupt source is an IRQ number on the board.

Tips

- The Auto (PCI only) option is available only for PCI boards. If you have an ISA board (PC/104 or onboard parallel port), set the IRQ manually.
- The Simulink Real-Time software treats PCI parallel port plugin boards like ISA boards. For PCI parallel port plugin boards, set the IRQ manually.
- Multiple boards can share an interrupt number.

Command-Line Information

```
Parameter: RL32IRQSourceModifier
Type: character vector
Value: 'Timer' | Auto (PCI only) | '3'|'4'|'5' | '6'|'7' |'8' |'9' |'10' |'11'
|'12' |'13' |'14' |'15'
Default: 'Timer'
```

I/O board generating the interrupt

Specify the board interrupt source.

Settings

Default: None/Other

```
Bitflow NEON
```

Specifies that the interrupt source is the $BitFlow^{\mbox{\tiny TM}}$ NEON video board.

```
GE_Fanuc(VMIC)_PCI-5565
```

Specifies that the interrupt source is the GE[®] Fanuc VMIC PCI-5565 board.

General Standards 24DSI12

Specifies that the interrupt source is the General Standards 24DSI12 board.

```
Parallel_Port
```

Specifies that the interrupt source is the parallel port of the target computer.

Speedgoat_I0321

Specifies that the interrupt source is the Speedgoat IO321 FPGA board.

```
Speedgoat_I0331
```

Specifies that the interrupt source is the Speedgoat IO331 FPGA board.

```
Speedgoat_I0333
```

Specifies that the interrupt source is the Speedgoat IO333 FPGA board.

None/Other

Specifies that the I/O board has no interrupt source.

Command-Line Information

Parameter: xPCIRQSourceBoard Type: character vector Value: 'Bitflow NEON' | 'GE_Fanuc(VMIC)_PCI-5565' | 'General Standards 24DSI12' | 'Parallel_Port' | 'Speedgoat_I0321' |

```
'Speedgoat_I0331'|
'Speedgoat_I0333'|
'None/Other'
Default: 'None/Other'
```

PCI slot (-1: autosearch) or ISA base address

Enter the slot number or base address for the I/O board generating the interrupt.

Settings

Default: -1

The PCI slot can be either -1 (let the Simulink Real-Time software determine the slot number) or of the form [bus, slot].

The base address is a hexadecimal number of the form 0×300 .

Тір

To determine the bus and PCI slot number of the boards in the target computer, in the Command Window, type:

```
tg = slrt;
getPCIInfo(tg, 'installed')
```

Command-Line Information

Parameter: xPCI0IRQSlot Type: character vector Value: '-1' | hexadecimal value Default: '-1'

See Also

"PCI Bus I/O Devices"

Monitor Task Execution Time

Monitor task execution times and append the results to the target object property ${\tt tg.TETlog}.$

Task execution time (TET) measures how long it takes the kernel to run for one base-rate time step. For a multirate model, use the profiler to find out what the execution time is for each rate.

Settings

Default: on

🔽 On

Monitors task execution times and appends the results to the target object property tg.TETlog.

🔲 Off

Does not monitor task execution times.

Command-Line Information

Parameter: RL32LogTETModifier
Type: character vector
Value: 'on' | 'off'
Default: 'on'

See Also

"Signal Logging Basics"

Signal logging data buffer size in doubles

Enter the maximum number of sample points that the software stores before wrapping.

Settings

Default: 100000

The maximum value for this option cannot exceed the available target computer memory, which the Simulink Real-Time software also uses to hold other items.

Tips

- Real-time applications use this buffer to store the time, states, outputs, and task execution time (TET) logs as defined in the Simulink model.
- The maximum value for this option derives from available target computer memory, which the Simulink Real-Time software also uses to hold other items. For example, in addition to signal logging data, the software also uses the target computer memory for the Simulink Real-Time kernel, real-time application, and scopes.

For example, assume that your model has six data items (time, two states, two outputs, and task execution time). If you enter a buffer size of 100000, the target object property tg.MaxLogSamples is calculated as floor(100000 / 6) = 16666. After the buffer saves 16666 sample points, it wraps and further samples overwrite the older ones.

• Suppose that you enter a logging buffer size larger than the available RAM on the target computer. When you download and initialize the real-time application, the target computer displays a message, ERROR: allocation of logging memory failed. To avoid this error, either install more RAM or reduce the buffer size for logging, and then restart the target computer. To calculate the maximum buffer size available for your real-time application logs, divide the amount of available RAM on your target computer by sizeof(double), or 8. Enter that value for the Signal logging data buffer size in doubles value.

Command-Line Information

Parameter: RL32LogBufSizeModifier Type: character vector Value: '100000' | A valid memory size Default: '100000'

Double buffer parameter changes

Use a double buffer for parameter tuning. This setting enables parameter tuning so that the process of changing parameters in the real-time application uses a double buffer.

Settings

Default: off

🔽 On

Changes parameter tuning to use a double buffer.

🔲 Off

Suppresses double buffering of parameter changes in the real-time application.

Tips

- When a parameter change request is received, the new value is compared to the old one. If the new value is identical to the old one, it is discarded, and if different, it is queued.
- At the start of execution of the next sample of the real-time task, the queued parameters are updated. This operation increases the task execution time (TET) and can cause a CPU overload error.
- Double buffering leads to a more robust parameter tuning interface, but it increases task execution time and the higher probability of overloads. Under typical conditions, keep double buffering off (default).
- If the real-time application contains MATLAB variables as the value of block parameters, the software ignores this double buffering setting. Normal parameter tuning occurs.

Command-Line Information

Parameter: xpcDblBuff
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Load a parameter set from a file on the designated target file system

Automatically load a parameter set from a file on the designated target computer file system.

Settings

Default: off

🔽 On

Enable the automatic loading of a parameter set from the file specified by **File name** on the designated target computer file system.

🔲 Off

Suppress the automatic loading of a parameter set from a file on the designated target computer file system.

Dependencies

This parameter enables **File name**.

Command-Line Information

Parameter: xPCLoadParamSetFile
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

"Save and Reload Parameters with MATLAB Language"

File name

Specify the target computer file name from which to load the parameter set.

Settings

. .

Тір

If the named file does not exist, the software loads the parameter set built with the model.

Dependencies

To enable this parameter, set Load a parameter set from a file on the designated target file system.

Command-Line Information

Parameter: xPCOnTgtParamSetFileName
Type: character vector
Value: A valid file name
Default: ' '

Generate INCA/CANape extensions (disables the Simulation Data Inspector and Dashboard blocks)

Enable real-time applications to generate data, such as A2L data, for Vector CANape and ETAS Inca.

Settings

Default: off

🔽 On

Enables real-time applications to generate data, such as that for A2L, for Vector CANape and ETAS Inca.

🔲 Off

Does not enable real-time applications to generate data, such as that for A2L, for Vector CANape and ETAS Inca.

Command-Line Information

Parameter: GenerateASAP2
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

"Prepare ASAP2 Data Description File"

Enable Stateflow animation

Enables visualization of Stateflow chart animation.

Settings

Default: off

🔽 On

Enables visualization of Stateflow chart animation.

🔲 Off

Disables visualization of Stateflow chart animation.

Command-Line Information

Parameter: xPCEnableSFAnimation
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

"Animate Stateflow Charts with Simulink External Mode"

Arm when connecting to target

Whether a button or a signal triggers data uploading (as defined by **Source**), the trigger must be armed to allow data uploading to begin. See "Configure Trigger Options" (Simulink Coder).

If the trigger **Source** is signal, monitoring of the trigger signal begins immediately. Data uploading begins when the trigger signal satisfies trigger conditions (as defined in the Trigger signal section).

If you clear **Arm when connecting to target**, manually arm the trigger by clicking the Arm **Trigger** button on the External Mode Control Panel.

Settings

Default: off

🔽 On

Connecting to the target arms the trigger.

🔲 Off

Data uploading begins immediately after clicking the **Arm Trigger** button on the External Mode Control Panel.

Command-Line Information

Parameter: ExtModeArmWhenConnect
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

- "Configure Trigger Options" (Simulink Coder)
- "Role of Trigger in Signal Data Uploading" (Simulink Coder)

TLC Options Parameters

TLC Command-Line Options

TLC command-line options are model options set before code generation to configure the real-time application and the real-time kernel.

To set these options from the **Code Generation** pane in the Configuration Parameters dialog box, select **Advanced Parameters**. Type the option in the **TLC command line options** text box in this form:

```
-aoption_name1=option_value1 -aoption_nameN=option_valueN
```

Prefix each option name with -a. Do not leave spaces around the equal sign. Do not place a comma between consecutive value assignments.

To set these options from the Command Window, use the syntax:

For example:

```
set_param('xpcosc', ...
    'TLCOptions', ...
    '-axPCMaxOverloads=20 -axPCModelStackSizeKB=4096')
```

To read these options from the Command Window, use the syntax:

get_param(model_name, 'TLCOptions')

For example:

```
get_param('xpcosc', 'TLCOptions')
```

ans =

-axPCMaxOverloads=20 -axPCModelStackSizeKB=4096

To remove these options, use the syntax:

set param(model name, 'TLCOptions', '')

In this section
"xPCMaxOverloads" on page 2-3
"xPCMaxOverloadLen" on page 2-3
"xPCStartupFlag" on page 2-4
"xPCModelStackSizeKB" on page 2-4
"xpcCPUClockPoll" on page 2-4
"SLRTFTZOFF" on page 2-5

xPCMaxOverloads

When xPCMaxOverloads is set to a value, the Simulink Real-Time software stops execution with a CPU overload at the next overload within the same application execution. For example, if xPCMaxOverloads is set to 3, the software stops with a CPU overload at the fourth overload in the same application execution.

The default value of 0 means that overloads are registered on the first overload.

Allowing the target computer CPU to overload can cause incorrect results, especially for multirate models. Use these TLC command-line options on page 2-2 only for diagnosis. When your diagnosis is complete, turn off these options.

See Also

"CPU Overload Options"

xPCMaxOverloadLen

When xPCMaxOverloadLen is set to a value, the software stops execution with a CPU overload at the next overload within the same execution step. For example, if xPCMaxOverloadLen is set to 2, the software stops execution with a CPU overload at the third overload within the same execution step.

The default value of $\boldsymbol{\theta}$ means that overloads are registered on the first overload within the same execution step.

Specify a value that is less than or equal to the value for xPCMaxOverloads. If xPCMaxOverload is set to a value, for example 4, and xPCMaxOverloadLen is not defined, the real-time application stops if one of following occurs:

- The cumulative overloads since execution start is greater than 4.
- One execution step has two overloads.

Allowing the target computer CPU to overload can cause incorrect results, especially for multirate models. Use these TLC command-line options on page 2-2 only for diagnosis. When your diagnosis is complete, turn off these options.

See Also

"CPU Overload Options"

xPCStartupFlag

xPCStartupFlag temporarily disables CPU overload checking during the first few model execution steps. After the model finishes the first xPCStartupFlag steps, the software reenables CPU overload checking, which takes effect for the next execution of the model.

The default value of 1 means that overloads are ignored on the first step. If xPCMaxOverloads and xPCMaxOverloadLen are not set, their default setting determines the software response to overloads.

See Also

"CPU Overload Options"

xPCModelStackSizeKB

Sets the number of kilobytes of stack memory that are allocated to real-time threads on the target computer. The default value is 2048.

Target computer memory for the real-time application executable, the kernel, and other uses is limited to a maximum of 4 GB.

See Also

"Troubleshoot Target Computer Stack Size"

xpcCPUClockPoll

Switches the kernel from interrupt mode to polling mode. When **Execution mode** is **Real-Time**, a nonzero value causes the real-time application to perform a busy wait at

the target computer CPU clock rate. If the value is $\boldsymbol{0}$ (the default) or if the option is not defined, the kernel executes in interrupt mode.

See Also

"Polling Mode"

SLRTFTZOFF

Configures floating-point processing:

- 0 (default) Denormal float processing is not performed. The representation of small numbers is slightly different from the representation when the value is 1. Floating-point operations are faster. The corresponding Microsoft[®] Visual C++[®] compiler options are /fp:fast /arch:SSE2.
- 1 Floating-point operations meet the IEEE[®] Standard for Floating Point Arithmetic (IEEE 754-2008). The corresponding Microsoft Visual C++ compiler options are / fp:precise with the default value of /arch.

See Also

- https://www.ieee.org
- https://www.microsoft.com

Simulink Real-Time Explorer

Simulink Real-Time Explorer

Interact with target computer and real-time application running on target computer

Description

Simulink Real-Time provides a single point of contact for configuring the development and target computers and interacting with a real-time application. You can monitor and trace signals, tune parameters, create and run instrument panels, and export and run an Explorer configuration as a standalone executable.

Note Do not use Simulink external mode while Simulink Real-Time Explorer is running. Use only one interface or the other.

Use Simulink Real-Time Explorer for the following tasks. For examples, click the links in the **More Information** column.

Target Computer Configuration

Capability	More Information
Configure target computer communication parameters.	"PCI Bus Ethernet Setup"
Configure target computer configuration settings.	"Target Computer Settings"
Configure target computer startup and create boot images for target computers.	"Target Computer Boot Methods"

Capability	More Information
Connect target computers to a development computer, and then disconnect them.	 "Configure and Control a Real-Time Application" "Process a Real-Time Application with Simulink Real- Time Explorer"
• Load a prebuilt real-time application into a target computer, and then unload it.	
• Start and then stop running a real-time application that you downloaded to the target computer.	
• Display execution time, task execution time, and other properties of the real-time application.	
• Change stop time and sample times without regenerating code.	

Real-Time Application Access and Control

Signal Access

Capability	More Information
Filter and group hierarchical signals	"Display and Filter Hierarchical Signals and Parameters"
Monitor signals.	"Monitor Signals with Simulink Real-Time Explorer"
	 "Instrument a Stateflow Subsystem"
Add host, target, or file scopes for the	"Create Target Scopes with Simulink Real-Time Explorer"
downloaded real-time application, and then	"Create Host Scopes with Simulink Real-Time Explorer"
remove them.	"Create File Scopes with Simulink Real-Time Explorer"
• Add signals to scopes, and then remove them.	
Configure scope properties.	
• Configure a host scope display and use it for viewing signal values.	
• Start and stop scopes.	
• Browse file scope output files on the target computer file system.	
Create, save, and load signal groups.	"Create Signal Groups with Simulink Real-Time Explorer"

Parameter Tuning

Capability	More Information	
Filter and group hierarchical parameters	"Display and Filter Hierarchical Signals and Parameters"	
Display and tune parameter values while the real-time application is running.	 "Tune Parameters with Simulink Real-Time Explorer" "Tune Parameter Structures with Simulink Real-Time Explorer" 	
Create, save, and load parameter groups.	"Create Parameter Groups with Simulink Real-Time Explorer"	

Instruments and Instrument Panels

Capability	More Information
Create, configure, save, and load graphical instrument panels for acquiring signals and tuning parameters. Attach parameters to instruments in instrument panels. Attach signals to instruments in instrument panels. Start and stop instrument panels and use them to interact with real-time applications.	 "Instrumentation for Real-Time Applications" on page 4-2 "Add Instrument Panel to Tank Model" on page 4-33
Configure Scope instruments.	 "View Signal Waveforms with Scope Instrument" on page 4-20 "View Signal Waveforms with Signal Triggered Scope Instrument" on page 4-28 "Triggering Scope Instruments"

Explorer Configuration

Capability	More Information	
Save and load environment properties, instrument panels, and Explorer configuration layouts.	 "Save Environment Properties" on page 4-45 "Save and Load Instrument Panels" on page 4-46 "Save and Restore Layouts" on page 4-47 	
Export Explorer configuration as a standalone executable.	"Export Explorer Configuration" on page 4-53	
Run standalone executable generated from an exported Explorer configuration.	"Unpack and Run Standalone Configuration" on page 4- 55	

Windows

Simulink Real-Time Explorer provides tool windows and workspace windows in its main window. Tool windows include **Targets**, **Applications**, **Scopes**, **Palette**, **Panels**, **Output**, and so on. Workspace windows include windows for interfacing with the real-time application, setting environment properties, setting application and scope properties, and so on. You can resize tool windows and drag them by their title bar. You can drag workspace windows by their tab.

Layouts

To create optimal window layouts for your work, customize the position, size, and behavior of the various windows. When you customize the layout for the tool windows, Explorer retains the positions, size, and docking locations of each tool window. For example, assume that you change the docking location of the **Targets** tool window, and then close Explorer and MATLAB. The next time that you start Explorer, the target tool window is docked in that same location. Workspace window customizations do not persist across different MATLAB sessions.

Tab Groups

To manage limited workspace while you are working with two or more Explorer windows, use Tab Groups. You can organize multiple workspace windows and tool windows into vertical and horizontal Tab Groups. You can drag windows from one Tab Group to another.

Arrange Tool Windows

You can dock tool windows anywhere within the main window, float them as separate windows independent of the main window, and hide them.

You arrange tool windows by dragging and dropping them or by right-clicking the window title bar and clicking a menu command:

- Pin tool windows to the left or the right of the tab well.
- Dock tool windows to the edge of the main window.
- Float tool windows over or outside the main window.
- Hide tool windows along the edge of the main window.
- Display tool windows on different monitors.
- Save window placement to a custom layout and restore it.

Arrange Workspace Windows

You can dock workspace windows anywhere to the left of the main window, float them as separate windows independent of the main window, and close them.

You arrange workspace windows by dragging and dropping them or by right-clicking the window tab and clicking a menu command:

- Tile workspace windows in the tab well.
- Dock workspace windows to the left edge of the main window.
- Float workspace windows over or outside the main window.
- Close workspace windows.
- Display workspace windows on different monitors.
- Save window placement to a custom layout and restore it.

Dock Windows with a Guide Diamond

When you click and drag a tool window title bar or a workspace window tab, a guide diamond appears. As you drag the window, place your cursor over one of the arrows in the diamond. A shaded area appears that shows where the window will appear after you release the mouse button.

To move a dockable window without snapping it into place, press the **Ctrl** key while you drag the window.

To return a tool window or workspace window to its most recent docked location, doubleclick the window title bar or window tab. You can fasten tool windows to one side of a frame in the main window. When you drag a tool window to another location, a guide diamond appears to help you redock the window.

Close and Auto Hide Tool Windows

You can close a tool window by clicking the **X** in the upper right of the title bar. To reopen the window, in the **View** menu, select the tool window that you want to reopen. If the tool window is closed, the tool window opens and becomes the active selected tool window. If the tool window is already open, it becomes the currently active tool window.

Tool windows support Auto Hide (\P), which causes a window to slide out of the way when you use a different window. When you autohide a window, its name appears on a tab at the edge of the frame of the main window. To use the window again, place your cursor over the tab or select the tool window from the **View** menu. The window slides back into view.

Create and Save Layouts

You can create and save a custom layout that includes workspaces that you created for a specific target computer and real-time application. You can then switch between layouts with a single command. If you open a layout that contains workspaces, the target computer must have the same application and resources as when you originally created the layout.

Restore Layouts

You can return Explorer to the original window layout for your settings by using the **Restore layout** command. When you run this command:

- Tool windows move to their original positions.
- Workspace windows that were previously opened close.
- Workspace windows included in the layout that are open in the original layout open.

You can restore workspace windows that depend on a specific target computer and realtime application. The target computer must be connected and contain the same application and resources as when you created the layout. Windows that fail to open produce an error message in the output window

Representative Layout

The figure shows a representative layout showing several tool and workspace windows.

📣 Simulink Real-Time Explorer				- 0	×
•	/indow Help				
🕐 💊 🕞 🗗 🔏 🛍 💥 🖉	• • • • • • • • • • • • • • • • • • •	BE 🔊 🔒 🛛 🔣 🗋			
Targets 🔹 🖣 🗙	TargetPC1/xpcosc/Scope 1 (Host Scope Vi		- X	Palette	• 0 ×
Applications V V X			— Integrator1:1 — Signal Generator:1	Instruments Pointer Knob Xnob NumericEntry Slider SwitchLED SwitchLever SwitchRocker SwitchToggle Panels Instrument Panels	→ Ū ×
 TargetPC1/xpcosc Properties Groupings Model Hierarchy xpcosc 	Gain G	60.9100 60.9200 60.9300 6	0.9 Value 400.00000 100000.000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 100000 100000 100000 100000 1	Properties	• ¹ ×
Scopes - 🖣 🗙			· · · · · · · · · · · · · · · · · · ·		• + A
 TargetPC1/xpcosc Host Scopes Scope 1 Target Scopes File Scopes 	Output		- ¶ ×		
Ready					

In this figure, the tool windows are:

- **Targets** (top left) Lists the targets in your Simulink Real-Time hierarchy. Under each target are nodes representing the properties and file system of the target.
- **Applications** (middle left) Lists the real-time applications running on the targets. Under each application are nodes representing the properties, signal and parameter groupings, and model hierarchy of the application. If a target is not running a real-time application, it does not appear in the list.

- **Scopes** (bottom left) Lists the scopes defined on the active real-time applications, whether predefined or dynamically created.
- **Output** (bottom center) Displays status and error messages.
- **Properties** (bottom right) Lists the properties of a selected instrument or layout element.
- **Panels** (middle right) Lists the instrument panels that have been loaded.
- **Palette** (top right) Lists the instrument and layout elements available for constructing instrument panels.

The workspace windows are:

- **TargetPC1/xpcosc/Scope 1 (Host Scope Viewer)** (top center) The host scope viewer window shows signal and time information from a host scope that is running on the target computer.
- **xpcosc (TargetPC1)** (mid center) The parameter window shows tunable parameters from the real-time application that is running on the target computer.

Exported Standalone Interface

You can export Simulink Real-Time Explorer as a standalone executable to a computer compatible with Windows[®]. You do not have to run MATLAB to run the standalone interface.

When you run Explorer as a standalone interface, it supports a subset of the capabilities that it supports under MATLAB.

- You cannot change the communication parameters that the interface uses to communicate with the target computers. Before you export the Simulink Real-Time Explorer configuration, configure and test the communication parameters for each target computer.
- For each instrument, the exporting software records the real-time application and target computer environment with which it is associated.
- If you rename a target computer, to maintain the connection to the real-time application, update the **TargetName** parameter for each associated instrument.
- You cannot load or unload a real-time application from the standalone executable. Before you start the executable, start the real-time application on the target computer.
- You can access only instrument panels and windows that you loaded before you exported the configuration.

- You cannot access the real-time application model hierarchy from the standalone executable.
- You can access only signals in signal groups that you loaded before you exported the configuration.
- You cannot move a signal from one signal group to another group, or create or load a new signal group.
- You can access only parameters in parameter groups that you loaded before you exported the configuration.
- You cannot move a parameter from one parameter group to another group, or create or load a new parameter group.
- You cannot save session layouts. If you close a window, you can restore the original layout using **File > Restore Original View**.

Open the Simulink Real-Time Explorer

- In the Simulink Editor, click **Tools > Simulink Real-Time**.
- On a computer compatible with Windows, click the standalone executable.

Programmatic Use

In the Command Window, type slrtexplr.

See Also

Topics

"Signal Monitoring Basics" "Signal Tracing Basics" "Signal Logging Basics" "File System Basics" "Tunable Block Parameters and Tunable Global Parameters" "Simulink Real-Time Scope Usage" "Target Scope Usage" "Host Scope Usage" "File Scope Usage"

"Instrumentation for Real-Time Applications" on page 4-2 "Explorer Configuration Exported to Run Outside MATLAB" on page 4-17

Introduced in R2014a

Simulink Real-Time Target Computer Manager

Interact with target computer

Description

Simulink Real-Time Target Computer Manager provides a single point of contact for configuring the target computers. You configure the connection to the target computer, select target computer boot modes, and view connection status.

Use Simulink Real-Time Target Computer Manager for the following tasks.

Open the Simulink Real-Time Target Computer Manager

From the Simulink Editor toolstrip, expand the target computer pulldown and select **Target Computer Manager**. Or, you can open the manager from the MATLAB command window as shown in "Open the Target Computer Manager" on page 3-13

Examples

Open the Target Computer Manager

Open the Simulink Real-Time Target Computer Manager.

SimulinkRealTime.utils.TargetComputerManager.open

Programmatic Use

SimulinkRealTime.utils.TargetComputerManager.open opens the Target
Computer Manger.

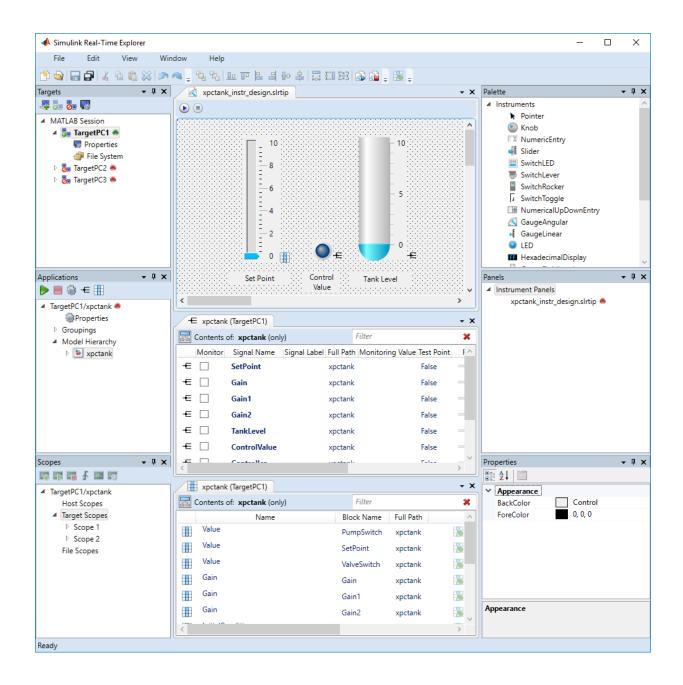
See Also

Simulink Real-Time Explorer |
SimulinkRealTime.utils.TargetComputerManager | slrtexplr

Introduced in R2019a

Simulink Real-Time Explorer Instrumentation

- "Instrumentation for Real-Time Applications" on page 4-2
- "Explorer Configuration Exported to Run Outside MATLAB" on page 4-17
- "View Signal Waveforms with Scope Instrument" on page 4-20
- "View Signal Waveforms with Signal Triggered Scope Instrument" on page 4-28
- "Add Instrument Panel to Tank Model" on page 4-33
- "Save Environment Properties" on page 4-45
- "Save and Load Instrument Panels" on page 4-46
- "Save and Restore Layouts" on page 4-47
- "Prepare Explorer Environment for Export" on page 4-48
- "Prepare Instrument Panel Configuration for Export" on page 4-50
- "Export Explorer Configuration" on page 4-53
- "Unpack and Run Standalone Configuration" on page 4-55


Instrumentation for Real-Time Applications

In this section...

"Instrument Selection and Binding" on page 4-5 "Display Instruments" on page 4-5 "Tuning Instruments" on page 4-7 "Layout Elements" on page 4-9 "Graphical Properties" on page 4-11

To visualize the behavior of a real-time application running on a target computer, Simulink Real-Time Explorer provides instrument panels. An instrument panel is an Explorer workspace into which you can insert one or more instruments. You can create and load instrument panels from the toolbar, from the **File** menu, and from the Panels tool window. You can display simultaneously as many panels as can fit on the screen.

After creating one or more instrument panels, you can drag instruments to the panels and drag parameters and signals to the instruments. You can add layout elements to clarify the relationships among the instruments. You can then start your real-time application from Simulink Real-Time Explorer and start the instrument panels to control the parameters and view the signal outputs.

At design time, you can manipulate the instruments by using the toolbar buttons.

Action	Icon	Notes
New, Open, Save, SaveAll	🖻 📦 🚍 🚍	The available operations vary with the active window.
		• You can save an instrument panel from within only the window for that panel.
		 You can create or open a signal or parameter group from within only the Applications window.
		 You can save a group from within only the window for that group.
		• You can create or open an instrument panel regardless of the active window.
		• You can use the SaveAll button regardless of the active window.
Cut, Copy, Paste, Delete	ሄ 🖪 🛍 💥	Applies to instruments only.
Layer	°, °,	Applies to instruments only.
Align on edges	 	Applies to instruments only.
Align on centers	<u></u>	Applies to instruments only.
Equalize sizes		Applies to instruments only.
Undo, Redo		Available after unsaved change only.

Action	lcon	Notes
Run, Stop, Run all, Stop all		Run and stop all active instrument panels.

Instrument Selection and Binding

To instrument a real-time application, populate an instrument panel with instruments compatible with the parameters and signals that they represent.

To make an instrument interact with the real-time application, bind a signal or parameter to the instrument. You bind the signal or parameter by dragging it from the signal or parameter viewer and dropping it on the instrument. You can also drag a signal or parameter from a signal or parameter group to an instrument.

You can bind a signal to a display instrument but not to a tuning instrument. You can bind a parameter to a tuning instrument and to a display instrument.

When you bind a signal to a display instrument, the **Signal** button - appears next to the instrument.

When you bind a parameter to a tuning or display instrument, the Parameter

button 📰 appears next to the instrument.

When the instrument panel is running, you can tune parameters by using tuning instruments. The software transmits the parameter changes to the real-time application. You can view the changed behavior by using display instruments.

When the instrument panel is not running, you can add, remove, and lay out instruments and connect signals and parameters to them.

Display Instruments

The table shows some of the tasks that you can do with display instruments.

	Action Requiring Use			
	Show the pressure in a container. Show the speed of a vehicle. Show current or voltage in a circuit. Show the level of fluid in a container. Show the pressure in a pipe.	 Requiring Real-valued data Show approximate value by angular displacement Show enumerated value as scale units (requires enum type data for display). Real-valued data Show approximate value by vertical displacement Show enumerated value as scale units (requires enum type data for display). 	GaugeAngular Properties	
•	Show the pressure in a container. Show audio output power. Show current or voltage in a circuit.	 Real-valued data Show approximate value by linear displacement Show enumerated value as scale units (requires enum type data for display). 	GaugeFluidLevel Properties	
•	Show traffic on a digital bus. Show the state of a state machine. Show on-off state of a switch. Show on-off state of a bidirectional pin.	 Hexadecimal-valued data Show values in hexadecimal format Boolean data Show value by light turning on and off 	GaugeLinear Properties	

Action	Requiring	Use
 Show a temperature measurement to given precision. Show a voltage measurement to given 	 Real-valued data Show real values in decimal or other format 	0 NumericDisplay Properties
precision.Show a date and time.		
 Show a time-varying temperature measurement. Show a time-varying voltage measurement. 	 Real-valued data Show time-varying waveforms 	

Scope Properties

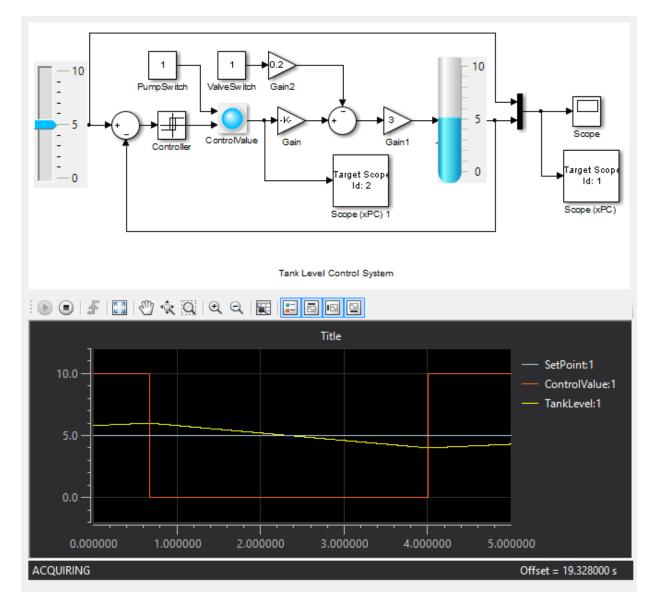
Status

Tuning Instruments

The table shows some of the tasks you can do with tuning instruments.

Action		R	equiring	Use
•	Control gain of a radio	•	Real-valued data	50
	receiver.	•	Set approximate value by	
	Control amplification of a radio transmitter.	angular displacementShow enumerated value	0 100	
		as scale units (requires	Knob Properties	

Offset = 0.0000 s

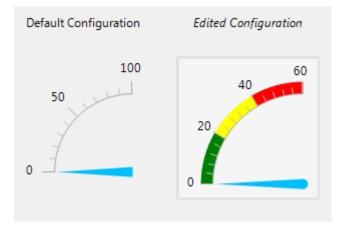

Action	Requiring	Use
• Enter initial set point control value for thermostat.	 Real-valued data Set exact numeric value	0 NumericEntry Properties
• Enter seed value for random number generator.		
 Control car radio audio volume using step- increment. 	 Real-valued data Set initial value and step increment	0 : NumericUpDownEntry
• Smoke test controller range in small number of clicks.		Properties
Control frequency of a radio receiver.Control pressure valve setting.	 Real-valued data Set approximate values by linear displacement Show enumerated value as scale units (requires enum type data for display). 	- 100 -

Slider Properties

Action	Requiring	Use
Turn on a power supply.Close a gate valve.	Boolean dataTurn control on or off	ON
J		SwitchLED Properties
		2
		SwitchLever Properties
		SwitchRocker Properties
		SwitchToggle Properties

Layout Elements

To make the relationships among the instruments clearer, you can add layout elements, such as a picture box. In the figure, a picture box shows to which signals the instruments are bound.



The table shows some ways that you can modify your layout with layout elements.

Action	Requiring	Use
• Group electrical instruments together and label the group.	Design-time box resizingRun-time static display	-GroupBox
• Group pressure instruments together and label the group.		GroupBox Properties
Label an electrical instrument.	• Design-time box resizing, left-right and up-down	Label
Label a pressure instrument.	text alignmentRun-time static display	Label Properties
• Group the electrical group with the pressure group and scroll between the groups.	Design-time box resizingRun-time box scrolling	
• Group a picture box with a group of instruments to show what the instruments are measuring.		Panel Properties
 Insert an image of a circuit diagram on a panel behind electrical 	 Design-time image stretch, zoom, center, and autosize 	
 instruments. Insert an image of a circulation diagram on a panel behind pressure instruments. 	Run-time static display	PictureBox Properties

Graphical Properties

You can configure the graphical properties of the instruments. The figure shows an instrument in its default configuration and with representative property changes.

To access a dialog box containing key instrument properties, select the instrument and in the top, right corner of the instrument, click the **Tasks** button **D**.

To access the complete **Properties** list for an instrument, in the instrument panel, select the instrument. To access a dialog box for a particular property group, click the group. To

Instrument Properties

The table shows some of the ways that you can modify the appearance of your instruments through the **Instrument** properties.

Action	Use	
Set instrument value	ScaleRange	
range	• Min, Span — Value bounds. Max is read-only.	
	Reverse — If True, reverse direction of display	
	• ScaleType — One of Linear, Log10, SplitLinearLog10.	
	 SplitStart, SplitPercent — Value and percentage of scale split for ScaleType SplitLinearLog10 only. 	
	 AngleMin, AngleSpan — Angular value bounds. AngleMax is read-only. For GaugeAngular and Knob only. 	

Action	Use
Set value display	ScaleDisplay > GeneratorStyle > Auto
properties	In ScaleDisplay > GeneratorAuto:
	 MidIncluded — If True, insert a tick halfway between major ticks.
	If MinorCount is even, space the minor ticks equally around the center tick. If MinorCount is odd, replace the center tick with the middle tick.
	• FixedMinMaxMajor — If True, the top and bottom ticks are constrained to be major ticks with min/max values defined by Min and Span .
	• MinorCount — Number of minor ticks between major ticks.
	• MinTextSpacing — Minimum space between scale ticks.
	• DesiredIncrement — Display of major tick values. number of labels = span/(desired increment + 1). Does nothing if the required labels do not fit in the space available in the graphic.
	You can also set properties for ScaleDisplay > GeneratorStyle > Fixed and ScaleDisplay > GeneratorStyle > Custom .
	ScaleDisplay > TextFormatting
	 Style — One of Number, Thousands, Prefix, Exponent, Price32nds, DateTime, DateTimeUTC.
	 PrecisionStyle — One of FixedDecimalPoints, SignificantDigits, None.
	• Precision — Number of digits to the right of the decimal point.
	• UnitsText — Text to display next to tick labels.

Action	Use		
Set pointer	Pointer		
properties	• Style — The pointer style depends upon the instrument.		
	 GaugeAngular — One of Arrow, ArrowLine, Line, Triangle. 		
	 GaugeLinear — One of Pointer, Triangle, TLine, ColorBar, Tube. 		
	 Knob — One of Dot, DotRaised, DotSunken, LineCenter, LineCustom, Triangle. 		
	 Slider — One of Bar, BarIndicator, BarIndicatorLight, Pointer 		
	• Size — The width of the pointer, in pixels.		
	• Margin — The margin around the pointer, in pixels.		
Set border properties Border			
	 Style — One of Bump, Etched, Flat, Raised, RaisedInner, RaisedOuter, Sunken, SunkenInner, SunkenOuter, RoundedSides. 		
	• Margin — Border margin, in pixels		
	• ThicknessDesired — Specified thickness, in pixels		
Set font properties ScaleDisplay > TickMajor > Font			
	ScaleDisplay > TickMid > Font		
	• Name — Font for text display.		
	 Font style — One of Light, Semilight, Regular, Italic, Semibold, Bold, Bold Italic, Light Oblique, Semibold Oblique. 		
	• Size — Font size, in points		
	• Strikeout — If True, add strikeout effect.		
	• Underline — If True , add underline effect.		

Action	Use
Set color properties	ColorSections
	By default, the list of color sections is empty. To add color sections, open the Color Section Collection Editor dialog box and click Add .
	• Color — Open the Color dialog box, which contains the color palettes Custom , Web , and System .
	• Start — Start of color section, in range units.
	• Stop — End of color section, in range units.
	Color properties are associated with the following instrument properties: Border , Pointer , ScaleDisplay > TickMajor , ScaleDisplay > TickMid , ScaleDisplay > TickMinor .

Appearance Properties

The table shows some of the ways that you can modify the appearance of your instruments through the ${\bf Appearance}$ properties.

Action	Use		
Set font properties	Name — Font for text display.		
	 Font style — One of Light, Semilight, Regular, Italic, Semibold, Bold, Bold Italic, Light Oblique, Semibold Oblique. 		
	• Size — Font size, in points		
	• Strikeout — If True, add strikeout effect.		
	• Underline — If True , add underline effect.		
Set color properties	BackColor, ForeColor — Open the color palettes Custom, Web, and System.		
Set image properties	• BackgroundImage — Navigate to a background image file.		
	 BackgroundImageLayout — One of Tile, None, Center, Stretch, Zoom. 		

See Also

GaugeAngular Properties | GaugeFluidLevel Properties | GaugeLinear Properties | GroupBox Properties | HexadecimalDisplay Properties | Knob Properties | LED Properties | Label Properties | NumericDisplay Properties | NumericEntry Properties | NumericUpDownEntry Properties | Panel Properties | PictureBox Properties | Scope Properties | Slider Properties | SwitchLED Properties | SwitchLever Properties | SwitchRocker Properties | SwitchToggle Properties

Related Examples

- "View Signal Waveforms with Scope Instrument" on page 4-20
- "View Signal Waveforms with Signal Triggered Scope Instrument" on page 4-28
- "Add Instrument Panel to Tank Model" on page 4-33
- "Triggering Scope Instruments"

More About

• Simulink Real-Time Explorer

Explorer Configuration Exported to Run Outside MATLAB

You can export a Simulink Real-Time Explorer configuration as a standalone executable to run outside MATLAB on a computer compatible with Windows.

Before exporting a Simulink Real-Time Explorer configuration, set up the execution environment, signal and parameter groups, and panels. Lay out the windows the way that you want them in the standalone executable. Follow these guidelines:

Execution Environment

For each computer on which you intend to run the standalone Simulink Real-Time Explorer executable:

- Check that the candidate computer is compatible with 64-bit Windows.
- Check that the CPU and operating system meet the requirements for executing the standalone Simulink Real-Time Explorer executable.
- Check that Microsoft .NET Framework 4.5 is installed on the candidate computer.

For each target computer on which you intend to run the real-time application:

- Check that the target computer meets the requirements for running the real-time application.
- In Simulink Real-Time Explorer, configure the target and communication settings to connect each computer that is compatible with Windows to each target computer.

You can have only one target computer node for each unique **IP address** setting.

- Configure the **Boot mode** setting for each target computer as **Stand Alone**.
- Optionally, rename the target computer session from TargetPCx to something more specific to your system.
- As a test, build and download a real-time application to each target computer connected to the development computer running Simulink Real-Time Explorer.

The real-time application on the target computer is the same application that you intend to access with the standalone executable.

Signal Groups

- To access signals, add them from the model hierarchy to a signal group.
- To include a signal group in the standalone package, load it into the current session.

Parameter Groups

- To access parameters, add them from the model hierarchy to a parameter group.
- To include a parameter in the standalone package, load it into the current session.

Instrument Panels

- To interact with multiple target computers, create a separate instrument panel for each separate real-time application and target computer pair.
- To include an instrument panel in the standalone package, load it into the current Simulink Real-Time Explorer session.
- If you renamed the target computer, update the **TargetName** parameter for each instrument to maintain the connection to the real-time application.

Window Layout

- You can configure which windows the software opens on startup by opening the windows and arranging them accordingly. When you export the model configuration, the software includes the windows layout in the standalone package.
- To return to the initial standalone executable layout, click File > Restore Initial View.

Limitations as Standalone Executable

When you export Simulink Real-Time Explorer as a standalone executable, it supports a subset of the capabilities that it supports under MATLAB.

• You cannot change the communication parameters that the interface uses to communicate with the target computers. Before you export the Simulink Real-Time Explorer configuration, configure and test the communication parameters for each target computer.

- For each instrument, the exporting software records the real-time application and target computer environment with which it is associated.
- If you rename a target computer, to maintain the connection to the real-time application, update the **TargetName** parameter for each associated instrument.
- You cannot load or unload a real-time application from the standalone executable. Before you start the executable, start the real-time application on the target computer.
- You can access only instrument panels and windows that you loaded before you exported the configuration.
- You cannot access the real-time application model hierarchy from the standalone executable.
- You can access only signals in signal groups that you loaded before you exported the configuration.
- You cannot move a signal from one signal group to another group, or create or load a new signal group.
- You can access only parameters in parameter groups that you loaded before you exported the configuration.
- You cannot move a parameter from one parameter group to another group, or create or load a new parameter group.
- You cannot save session layouts. If you close a window, you can restore the original layout using **File > Restore Original View**.

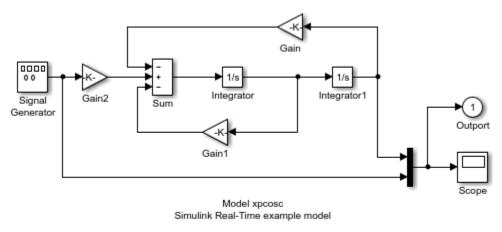
More About

• "Standalone Boot Method"

View Signal Waveforms with Scope Instrument

In this section...

"Create Instrument Panel" on page 4-21


"Configure Slider Instrument for Parameter Tuning" on page 4-21

"Configure Scope Instrument with Default Triggering" on page 4-23

"Run Instrumented Model" on page 4-24

In this example, create an instrument panel for the $\verb+xpcosc+$ model that contains the following instruments:

- Slider To tune the input signal amplitude (Signal Generator/Amplitude).
- Slider To tune the oscillator feedback damping parameter (Gain1/Gain).
- Scope To display the input signal (Signal Generator) and the oscillator output (Integrator1).

Copyright 1999-2013 The MathWorks, Inc.

Start by building and downloading the real-time application to the target computer, running Simulink Real-Time Explorer, and connecting Explorer to the target computer.

Create Instrument Panel

Create and save an instrument panel for the xpcosc model.

- 1 In the **Panels** pane, right-click the **Instrument Panels** node, and then click **Add New**.
- 2 Type a name for the instrument panel in the **Name** text box. Give the panel a name like xpcosc_scope_instr_freerun.slrtip. Type a folder location in the **Location** text box, and then press **Enter**
- 3

Click the Save button 📊.

Configure Slider Instrument for Parameter Tuning

Select and configure an instrument to tune two parameters in the xpcosc model. You must have previously created the xpcosc_scope_instr_freerun.slrtip instrument panel.

The parameter characteristics are listed in this table.

Name	Туре	Range	Purpose
Amplitude	Numeric	0–10 units	Represents the amplitude of the input signal Signal Generator. You do not have to set it to an exact value.
Gain1	Numeric	0–1000 units	Represents the damping of the oscillator feedback signal Gain1. You do not have to set it to an exact value.

The Slider instrument meets the requirement for Amplitude and Gain1. To set exact numeric values, use, for example, a NumericEntry instrument.

To select and configure the instrument:

1 Load the instrument panel.

In the **Panels** pane, right-click the **Instrument Panels** node and select **Existing**. From the list, select xpcosc_scope_instr_freerun.slrtip.

2 Select the instrument.

From the Palette pane, drag a Slider instrument to the
xpcosc_scope_instr_freerun.slrtip instrument panel.

3 Bind the parameter to the instrument.

To bind the Amplitude parameter to the Slider instrument, open the Parameter

workspace for model xpcosc (on the toolbar). Drag the **Parameter** icon next to parameter Amplitude to the Slider instrument.

A small copy of the **Parameter** icon appears next to the Slider instrument.

4 Set the instrument range.

Click the Slider instrument, and then click the **Tasks** button \blacktriangleright in the top, right corner.

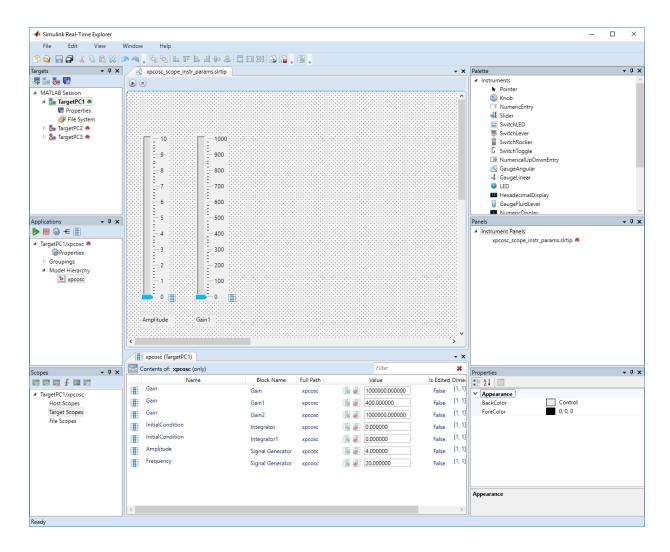
- 5 In the Slider Tasks dialog box, set property Min to 0 and property Span to 10.
- **6** Select and configure a label.

From the **Palette** pane, drag a Label layout item under the Slider instrument.

- 7 Click the Label element.
- 8 In the **Properties** pane, scroll down to the **Appearance** node. Set the **Text** property to Amplitude, and then press **Enter**.
- **9** Scroll down to the **TextAlign** property. Click the down arrow and click the center of the nine blocks presented.

The **TextAlign** property becomes MiddleCenter.

10 Repeat steps **2–9** for parameter Gain1.


Set the property Min to 0 and property Span to 1000.

Set the **Text** property to Gain1.

11

Click the **Save** button **[**.

At the end of this task, Simulink Real-Time Explorer looks like this figure.

Configure Scope Instrument with Default Triggering

Add a Scope instrument and configure it with the default triggering, which is a TriggerMode of SINGLESHOT and a TriggerSource of FREERUN. You must have previously created the xpcosc_scope_instr_freerun.slrtip instrument panel.

The signal characteristics are listed in this table.

Name	Туре	Range	Purpose
Signal Generator	Numeric	–25:25 units	Represents the time-varying value of the signal generator input.
Integrator1	Numeric	–25:25 units	Represents the time-varying value of the oscillator output.

To select and configure the Scope instrument:

1 Load the instrument panel.

In the **Panels** pane, right-click the **Instrument Panels** node and select **Existing**. From the list, select xpcosc_scope_instr_freerun.slrtip.

2 Select the instrument.

From the **Palette** pane, drag a Scope instrument to the xpcosc_scope_instr_freerun.slrtip instrument panel.

3 Bind the signals to the instrument.

To bind the Signal Generator signal to the Scope instrument, open the Signal workspace for model xpcosc (\leftarrow on the toolbar). Click the **Signal** icon \leftarrow next to signal Signal Generator and drag the icon to the Scope instrument.

The name Signal Generator: 1 appears in the Scope instrument legend.

- 4 In a similar manner to step 3, bind the Integrator1 signal to the Scope instrument
- **5** Set the instrument range.

Select the Scope instrument, and then click the **YAxesLimits** node in the **Properties** list.

- 6 Set property Max to 25 and Min to -25.
- 7

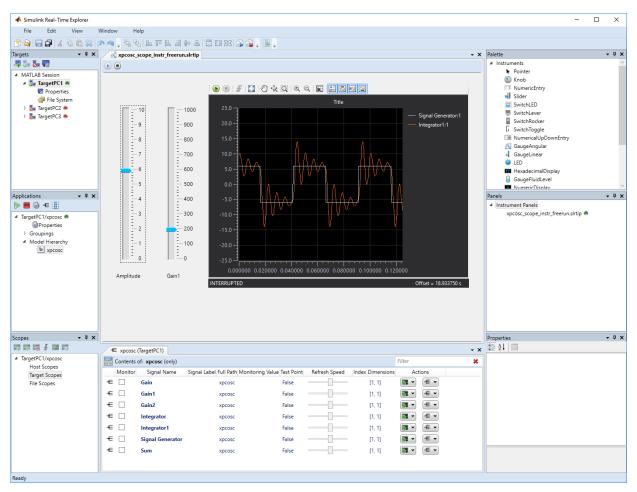
Click the Save button 🔚

Run Instrumented Model

Run the instrumented xpcosc model, tune the parameters, and view the output waveform. You must have previously built and downloaded the xpcosc model and configured the xpcosc_scope_instr_freerun.slrtip instrument panel.

1 Load the instrument panel.

In the **Panels** pane, right-click the **Instrument Panels** node and select **Existing**. From the list, select xpcosc_scope_instr_freerun.slrtip.


- ² Set property **Stop time** to inf in the **Applications** pane (on the toolbar).
- **3** To start the instrument, in the xpcosc_scope_instr_freerun.slrtip instrument panel, click the **Run Instrument** button **>**.
- 4 To start execution, in the **Applications** pane, click the real-time application, and then click the **Start** button **>** on the toolbar.

The Scope instrument displays one set of captured waveforms, and then stops.

5 To change the amplitude and damping value, use the Amplitude and Gain1 instruments.

For example, to increase the amplitude and reduce the oscillator damping, set Amplitude to 6 and Gain1 to 200.

6 To view the result of the parameter changes, click the **Start Acquisition** button **s** on the Scope toolbar.

- 7 To stop execution, in the **Applications** pane, click the real-time application, and then click the **Stop** button **=** on the toolbar.
- 8 To stop the instruments, in the xpcosc_scope_instr_freerun.slrtip instrument panel, click the Stop Instrument button .

Scope | Slider

More About

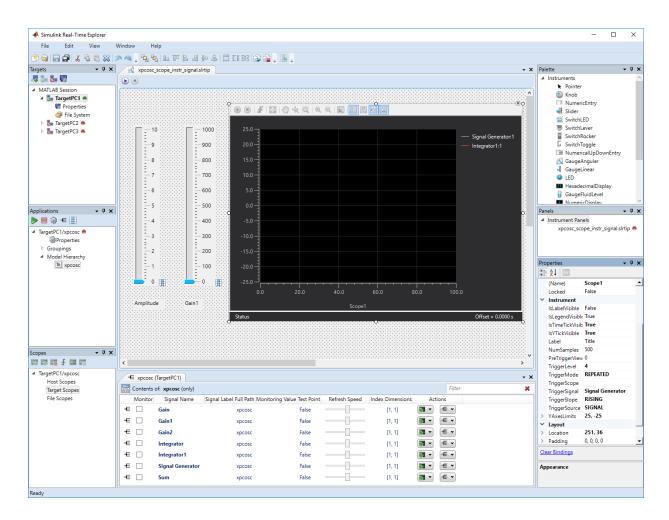
- "View Signal Waveforms with Signal Triggered Scope Instrument" on page 4-28
- "Add Instrument Panel to Tank Model" on page 4-33
- "Triggering Scope Instruments"
- "Save and Load Instrument Panels" on page 4-46
- "Save and Restore Layouts" on page 4-47
- "Instrumentation for Real-Time Applications" on page 4-2
- "Display and Filter Hierarchical Signals and Parameters"

View Signal Waveforms with Signal Triggered Scope Instrument

The default trigger mode of the Scope instrument is SINGLESHOT, which displays one sample sweep. To trace a waveform in a continuously updated moving display, you can change the trigger mode to REPEATED. However, a moving display is often difficult to evaluate.

In this example, to produce a continuously updated static display, we configure the scope instrument to trigger mode REPEATED with trigger source Signal.

Preconditions


You must have previously built and downloaded the xpcosc model and configured the xpcosc_scope_instr_freerun.slrtip instrument panel. See "View Signal Waveforms with Scope Instrument" on page 4-20.

Configure Scope Instrument

1 Load the instrument panel.

In the **Panels** pane, right-click the **Instrument Panels** node and select **Existing**. From the list, select xpcosc_scope_instr_freerun.slrtip.

- 2 Select the Scope instrument.
- **3** Open the **Instrument** properties list.
- 4 Set **TriggerMode** to REPEATED.
- 5 Set **TriggerSource** to Signal.
- 6 Set TriggerSignal to Signal Generator.
- 7 Set **TriggerSlope** to Rising.
- 8 Set **TriggerLevel** to 4.
- **9** Save the instrument panel under another name, such as xpcosc_scope_instr_signal.slrtip.

Run Instrumented Model

Run the instrumented xpcosc model, tune the parameters, and view the output waveform with signal triggering and forced triggering. You must have previously built and downloaded the xpcosc model and configured the xpcosc scope instr signal.slrtip instrument panel.

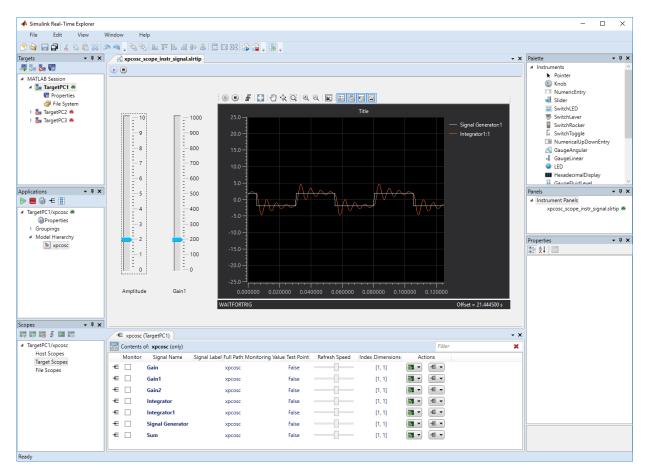
1 Load the instrument panel.

In the **Panels** pane, right-click the **Instrument Panels** node and select **Existing**. From the list, select xpcosc_scope_instr_signal.slrtip.

- ² Set property **Stop time** to inf in the **Applications** pane (on the toolbar).
- **3** To start the instruments, in the xpcosc_scope_instr_signal.slrtip instrument panel, click the **Run Instrument** button **(b)**.
- 4 To start execution, in the **Applications** pane, click the real-time application, and then click the **Start** button **>** on the toolbar.

The Scope instrument displays a continuous series of captured waveforms.

5 To change the amplitude and damping value, use the Amplitude and Gain1 instruments.


For example, to increase the amplitude and reduce the oscillator damping, set Amplitude to 6 and Gain1 to 200.

The Scope instrument displays the changes in waveforms immediately.

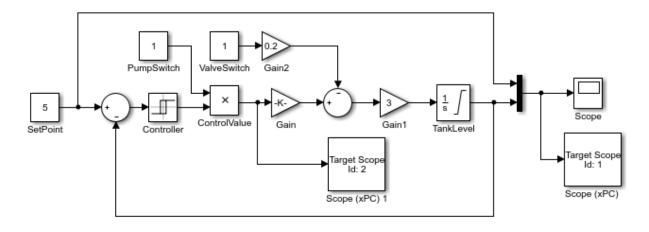
6 Reduce the amplitude below the **TriggerLevel** (4).

The Scope instrument stops displaying the changes in waveforms because the signal does not have a high enough amplitude to reach the trigger level.

7 To display waveforms with an amplitude below the trigger level, click the ForceTrigger button f on the toolbar.

- 8 To stop execution, in the **Applications** pane, click the real-time application, and then click the **Stop** button **e** on the toolbar.
- 9 To stop the instruments, in the xpcosc_scope_instr_signal.slrtip instrument panel, click the Stop Instrument button .

Scope | Slider


More About

- "View Signal Waveforms with Scope Instrument" on page 4-20
- "Add Instrument Panel to Tank Model" on page 4-33
- "Triggering Scope Instruments"
- "Save and Load Instrument Panels" on page 4-46
- "Save and Restore Layouts" on page 4-47
- "Instrumentation for Real-Time Applications" on page 4-2
- "Display and Filter Hierarchical Signals and Parameters"

Add Instrument Panel to Tank Model

This example shows how to create an instrument panel in Simulink® Real-Time[™] Explorer for the Simulink Real-Time application built from the xpctank model. The instrument panel contains these instruments:

- Slider To tune the required tank level (SetPoint).
- GaugeFluidLevel To display the actual tank level (TankLevel).
- LED To display the pump control status (ControlValue).

This example also shows how to update the real-time application by adding a signal with enum data type in the model and rebuilding the application. After downloading the updated real-time application to the target, you can add an instrument to display the enumerated states as the instrument units.

Prerequisites

This example assumes knowledge of how to complete these operations:

- Open Simulink Real-Time Explorer, slrtexplr.
- Start the target computer.

- Connect slrtexplr to the target computer.
- Open the xpctank model. open_system(docpath(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcta nk')))
- Build the xpctank model and download the real-time application to the target computer.
- Open the parameter and signal panels for the xpctank model in slrtexplr.

Create Instrument Panel

To provide an interactive instrument panel display for simulation, create and save an instrument panel for the xpctank real-time application.

To create an instrument panel in slrtexplr:

- 1. In the Panels pane, right-click the Instrument Panels node, then click New.
- 2. In the Name field, type a xpctank_instr_design.slrtip for the name.
- **3.** In the **Location** field, select the folder for the panel file.
- 4. Press Enter and click the Save button.

Configure Instrument for Parameter Tuning

To tune a parameter from the xpctank real-time application, select and configure an instrument in the xpctank_instr_design.slrtip instrument panel.

Parameter Characteristics

Before binding a parameter to an instrument, examine the characteristics of the parameter for compatibility with the instrument.

The parameter characteristics for the SetPoint block parameter are:

- Type Numeric
- Range 0-10 units
- Purpose Represents the level at which the controller maintains the tank fluid level. You do not have to set the level to an exact value.

The Slider instrument is compatible with the characteristics of SetPoint. To set an exact numeric value, use a NumericEntry instrument, for example.

Configure Slider Instrument for SetPoint Tuning

To select and configure the Slider instrument from the xpctank_instr_design.slrtip instrument panel:

1. Select the instrument. From the **Palette** pane, drag a Slider instrument to the xpctank_instr_design.slrtip instrument panel.

2. Access the block parameter list. In the **Applications** pane, right-click xpctank and select View Block Parameters.

3. Bind the SetPoint parameter to the instrument. Drag the **Parameter** icon next to the parameter SetPoint and drop it into the Slider instrument. Next to the Slider instrument, a small copy of the **Parameter** icon appears.

4. Set the instrument range. Click the Slider instrument, and then click the **Tasks** button in the top right corner.

5. In the Slider Tasks dialog box, set property Min to 0 and property Span to 10.

6. Select a label. From the **Palette** pane, drag a Label layout item to underneath the Slider instrument.

7. Configure the label. Click the Label element. In the lower right corner, select the **Properties** pane.

8. Scroll down to the **Appearance** node. Set the **Text** property to **Set Point**, and then press **Enter**.

9. Scroll down to the **TextAlign** property. Click the down arrow and click the center block of the nine blocks presented. The **TextAlign** property becomes MiddleCenter.

10. Click the Save button.

At the end of this task, Simulink Real-Time Explorer displays the instrument panel, model signals panel, and model parameters panel.

Configure Instruments for Signal Display

To display two signals from the xpctank model, select and configure instruments in the xpctank_instr_design.slrtip instrument panel.

Signal Characteristics

Before binding a signal to an instrument, examine the characteristics of the signal for compatibility with the instrument.

The signal characteristics for the TankLevel signal are:

- Type Numeric
- Range 0–10 units
- Purpose Represents the current tank fluid level. You do not have to display an exact value.

The GaugeFluidLevel instrument is compatible with the characteristics of TankLevel. To display an exact numeric value, use a NumericDisplay instrument, for example.

The signal characteristics for ControlValue are:

- Type Boolean
- Range 1, 0
- Purpose Represents the state of the pump (on or off).

The LED instrument is compatible with the characteristics of ControlValue.

Configure Instruments for TankLevel and ControlValue Display

To select and configure instruments from the xpctank_instr_design.slrtip instrument panel:

1. Select the instrument. From the **Palette** pane, drag a GaugeFluidLevel instrument to the xpctank_instr_design.slrtip instrument panel.

2. Access the signal list. In the **Applications** pane, right-click xpctank and select View Signals.

3. Bind the signal to the instrument. To bind the TankLevel signal to the GaugeFluidLevel instrument, in the **Applications** pane, right-click xpctank and select

View Signals. Drag the **Signal** icon next to signal TankLevel and drop it into the GaugeFluidLevel instrument. Next to the GaugeFluidLevel instrument, a small copy of the **Signal** icon appears.

÷

4. Set the instrument range as required. Select the GaugeFluidLevel instrument, and then click the **Tasks** button in the top right corner.

5. In the **GaugeFluidLevel Tasks** dialog box, set property **Min** to **0** and property **Span** to **10**.

6. Select a label. From the **Palette** pane, drag a Label layout item to underneath the GaugeFluidLevel instrument.

7. Configure the label. Click the Label element. In the lower right corner, select the **Properties** pane.

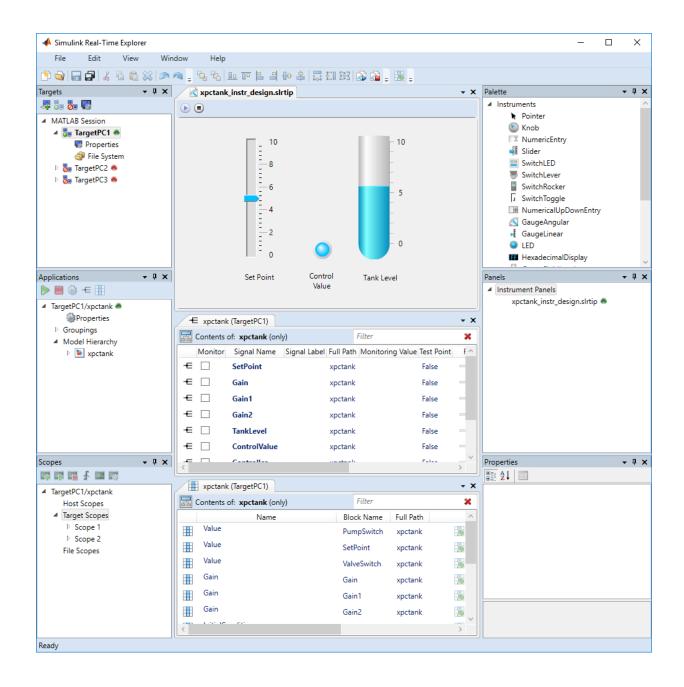
8. Scroll down to the **Appearance** node. Set the **Text** property to **Tank** Level, and then press **Enter**.

9. Scroll down to the **TextAlign** property. Click the down arrow and click the center block of the nine blocks presented. The **TextAlign** property becomes MiddleCenter.

10. Click the Save button.

Using a similar procedure, add an LED instrument to the instrument panel and bind signal ControlValue to it. Label the LED Control Value. At the end of this task, Simulink Real-Time Explorer displays the SetPoint, TankLevel, and ControlValue on the instrument panel.

Run the Model and Instrument Panel


You have built and downloaded the xpctank model and configured the xpctank_instr_design.slrtip instrument panel for the model. You can now run the model and instrument panel.

1. In the Applications pane, set property Stop time to inf.

2. To start model execution, in the **Applications** pane, click the real-time application, and then click the **Start** button.

3. To start the instrument panel, in the xpctank_instr_design.slrtip instrument panel, click the **Run** button.

4. Using the Slider instrument, set the tank level to the required value, such as **5**. The tank level rises to and oscillates around the set point.

To stop model execution, in the **Applications** pane, click the real-time application, and then click the **Stop** button.

To stop the instruments, in the xpctank_instr_design.slrtip instrument panel, click the **Stop** button.

Add Signal of enum Type and Display with Instrument

For some signals or parameters in the model, it is helpful to define their data as type enum and use the enumerated values as the scale of the instrument display.

The instruments that support enumerated values as scales for signals are:

- GaugeAngular
- GaugeLinear
- GaugeFluidLevel

The instruments that support enumerated values as scales for parameters are:

- Knob
- Slider

The LED on the instrument panel indicates the open or closed state of the valve that fills the tank.

Using a signal with enum data type, a more informative display for the state of the valve is available with a GaugeAngular instrument.

1. Open the xpctank model.

open_system(docpath(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpctank'
)))

 ${\bf 2.}$ In MATLAB, define the enum data type with this class definition with a function call, for example:

run(docpath(fullfile(matlabroot, 'examples', 'xpc', 'main', 'myEnumTypeDefinition.m')))

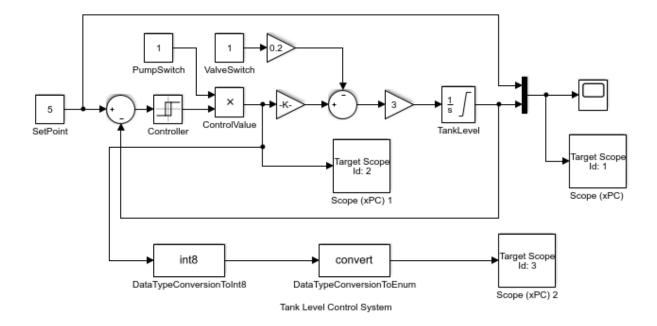
This function defines the class as:

```
Simulink.defineIntEnumType('ControlValueState', ...
{'Closed', 'Open'}, ...
[0;10], ...
'Description', 'Control value state', ...
```

```
'DefaultValue', 'Closed', ...
'HeaderFile', 'mycontrolvaluestate.h', ...
'DataScope', 'Exported', ...
'AddClassNameToEnumNames', true, ...
'StorageType', 'int8');
```

3. In Simulink, update the xpctank model, by adding:

• A Data Type Conversion block (DataTypeConversionToInt8) to convert the ControlValue signal data type to int8; set the block properties as shown:


Block Parameters: DataTypeConversionToInt8						
Data Type Conversion						
Convert the input to the data type and scaling of the output.						
The conversion has two possible goals. One goal is to have the Real World Values of the input and the output be equal. The other goal is to have the Stored Integer Values of the input and the output be equal. Overflows and quantization errors can prevent the goal from being fully achieved.						
Parameters						
Output minimum: Output maximum:						
Output data type: int8 >>						
Lock output data type setting against changes by the fixed-point tools						
Input and output to have equal: Real World Value (RWV)						
Integer rounding mode: Floor -						
Saturate on integer overflow						
OK Cancel Help Apply						

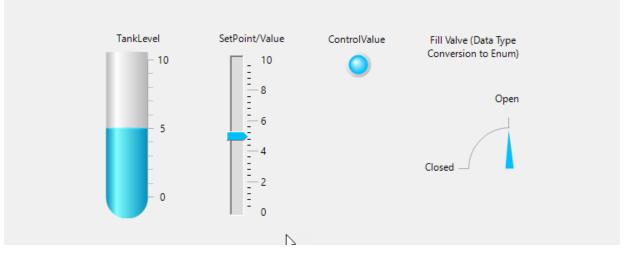
• A Data Type Conversion block (DataTypeConversionToEnum) to convert the int8 signal data type to enum; set the block properties as shown:

Block Parameters: DataTypeConversionToEnum							
Data Type Conversion							
Convert the input to the data type and scaling of the output.							
The conversion has two possible goals. One goal is to have the Real World Values of the input and the output be equal. The other goal is to have the Stored Integer Values of the input and the output be equal. Overflows and quantization errors can prevent the goal from being fully achieved.							
Parameters							
Output minimum: Output maximum:							
Output data type: Enum: ControlValueState >>							
Lock output data type setting against changes by the fixed-point tools							
Input and output to have equal: Real World Value (RWV)							
Integer rounding mode: Floor							
Saturate on integer overflow							
OK Cancel Help Apply							

• A Target Scope block to display the output

The updated model appears as shown:

 ${\bf 4.}$ Build the <code>xpctank</code> model and download the real-time application to the target computer.


5. Open the xpctank_instr_design.slrtip instrument panel in slrtexplr, and open the parameter and signal panels for the xpctank model as described in **Configure Instruments for Signal Display**.

6. Add a GaugeAngular instrument to the instrument panel.

7. Bind the DataTypeConversionToEnum signal to the GaugeAngular instrument.

8. Run the model and run the instrument panel as described in **Run the Model and Instrument Panel**.

The GaugeAngular instrument displays the state of the fill valve as **Open** or **Closed**.

GaugeFluidLevel | LED Properties | Slider

More About

- "Getting Started with Simulink Real-Time"
- "Instrumentation for Real-Time Applications" on page 4-2
- "Display and Filter Hierarchical Signals and Parameters"
- "View Signal Waveforms with Scope Instrument" on page 4-20
- "View Signal Waveforms with Signal Triggered Scope Instrument" on page 4-28
- "Save and Restore Layouts" on page 4-47
- "Save and Load Instrument Panels" on page 4-46

Save Environment Properties

The Simulink Real-Time Explorer environment consists of the property settings you define for the **Targets** pane. You can save your settings for the next session.

1 Set properties in the **Targets** pane.

After you change one or more properties and press **Enter**, the **Save** button and menu item are available.

2

To save your environment properties, click the **Save** button **m** in the toolbar.

If you do not explicitly save the environment settings, Simulink Real-Time Explorer asks on exit if you want to save them.

When starting, Simulink Real-Time Explorer loads the last-saved set of environment properties.

Save and Load Instrument Panels

As you are developing instrument panels to control your model, you can save your panels or load existing panels. You can load more than one instrument panel at a time.

- To save your instrument panel, click in the **Panels** pane, and then click the **Save** button
- To load an existing instrument panel, in the **Panels** pane, right-click the **Instrument Panels** node and select **Existing**.

Save and Restore Layouts

As you are configuring Simulink Real-Time session layouts, you can save your layout or restore a previous layout. Saving a layout preserves the following information:

- The position of the open panes and tabs.
- The target computer connections.
- The instrument panels that you loaded.
- The signal and parameter groups that you loaded.

Saving a layout saves the **Scopes** pane position, but it does not save the state of the scopes in the pane. In particular, if you add a scope within a Simulink Real-Time session, the software does not restore the new scope with the rest of the layout.

- To save a session layout, click **File > Save Layout**.
- To restore a session layout, click File > Restore Layout.

Prepare Explorer Environment for Export

Check that each combination of a candidate computer that is compatible with Windows and a target computer works together. Each target computer must run in standalone mode.

The example uses the instrumented xpctank model. Before carrying out this procedure, you must have performed the steps in "Real-Time Application Instruments with Simulink Real-Time Explorer".

For each computer on which you intend to run the standalone Simulink Real-Time Explorer executable:

- 1 Check that the candidate computer is compatible with 64-bit Windows.
- **2** Check that the CPU and operating system meet the requirements for executing the standalone Simulink Real-Time Explorer executable.
- **3** Check that Microsoft .NET Framework 4.5 is installed on the candidate computer.

For each target computer on which you intend to run the real-time application:

- **1** Check that the target computer CPU and operating system meet the requirements for running the Simulink Real-Time kernel.
- 2 Check that the Simulink Real-Time Explorer **Targets** pane contains a target computer node representing each target computer that you intend to access.

If you rename a target computer node, make the corresponding change in the **Bindings > TargetName** property for each instrument.

3 Check that the settings in the **Host-to-Target communication** tab match the requirements of the target computer.

You can have only one target computer node for each unique IP address setting.

- 4 Check that the settings in the **Target settings** tab match the capabilities of the target computer.
- **5** Prepare and copy the required kernel and real-time application files to the target computer. In the **Boot configuration** tab, set **Boot mode** to Stand Alone.
- 6 Connect the target computer to the candidate computer and restart the target computer. Check that the target computer loads the Simulink Real-Time kernel and starts the real-time application.

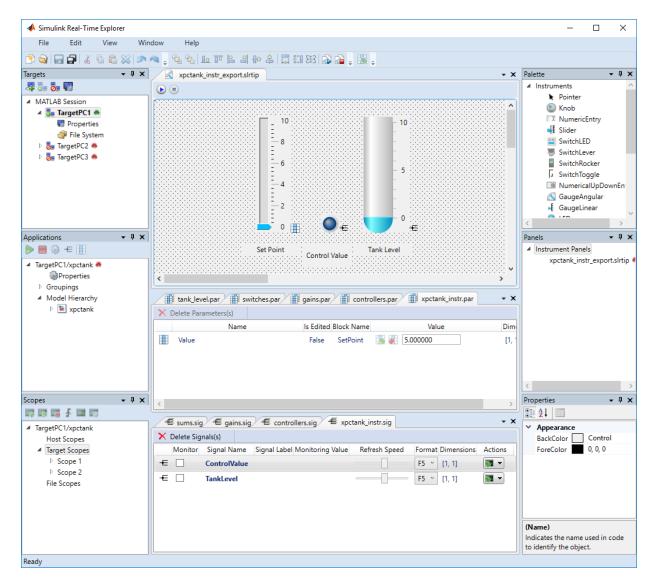
More About

- "Development Computer Requirements"
- "PCI Bus Ethernet Setup"
- "Target Computer Settings"
- "Standalone Boot Method"
- "Explorer Configuration Exported to Run Outside MATLAB" on page 4-17

Prepare Instrument Panel Configuration for Export

Load the instrument panels for the instrumented model. Resize and lay out Simulink Real-Time Explorer.

The example uses the instrumented xpctank model.


Note When you run the standalone executable, you cannot access the model hierarchy. You can access only instrument panels and windows that were open when you exported the configuration. You can access only signals and parameters that were loaded in signal and parameter groups when you exported the configuration.

1 Load your instrument panels into Simulink Real-Time Explorer.

Here, the panel is xpctank_instr_design.slrtip.

- 2 Create a parameter group for the key block representing the set point (xpctank_instr.par).
- 3 Create parameter groups for the low-level blocks representing the tank level, switches, gains, and controllers (tank_level.par, switches.par, gains.par, and controllers.par).
- 4 Create a signal group for the key blocks representing the control value and tank level (xpctank_instr.sig).
- 5 Create signal groups for the low-level blocks representing the sums, gains, and controllers (sums.sig, gains.sig, and controllers.sig).
- **6** Open, lay out, and resize the windows that you want the standalone executable to open.
- **7** Save each instrument panel.

The xpctank_instr_design.slrtip configuration looks like the figure.

The next task is "Export Explorer Configuration" on page 4-53.

More About

- "Create Parameter Groups with Simulink Real-Time Explorer"
- "Create Signal Groups with Simulink Real-Time Explorer"
- "Instrumentation for Real-Time Applications" on page 4-2

Export Explorer Configuration

The example uses the instrumented xpctank model. Before carrying out this procedure, you must have performed the steps in "Prepare Instrument Panel Configuration for Export" on page 4-50.

Note When you run the standalone executable, you cannot access the model hierarchy. You can access only instrument panels and windows that were open when you exported the configuration. You can access only signals and parameters that were loaded in signal and parameter groups when you exported the configuration.

- 1 To export the configuration as a standalone executable, click **File > Export**.
- 2 In the **Specify Package Name** text box, type xpctank_instr_export.

Export Standalone Package	2		-		×		
Specify package name. This will name the created zip file and the runnable executable within.							
Specify Package Name:	xpctank_instr_ex	port					
		ОК		Cance	1		

3 Click OK.

The software generates a file named <code>xpctank_instr_export.zip</code> in the current folder.

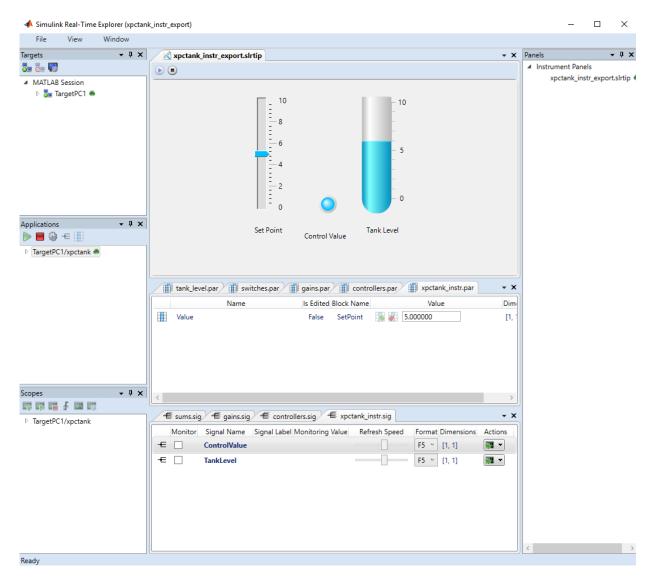
The next task is "Unpack and Run Standalone Configuration" on page 4-55.

More About

• "Instrumentation for Real-Time Applications" on page 4-2

Unpack and Run Standalone Configuration

Unpack the standalone executable onto a computer that is compatible with Windows.


The example uses the instrumented xpctank model. Before carrying out this procedure, you must have performed the steps in "Export Explorer Configuration" on page 4-53.

Note When you run the standalone executable, you cannot access the model hierarchy. You can access only instrument panels and windows that were open when you exported the configuration. You can access only signals and parameters that were loaded in signal and parameter groups when you exported the configuration.

- 1 Copy xpctank_instr_export.zip from the original folder to a folder on the computer compatible with Windows, for example C:\workdir.
- 2 Double-click xpctank_instr_export.zip.
- **3** In the unzip program dialog box, click **Extract**.
- 4 Select the extraction root folder, and then click **Extract**.
- 5 Navigate to folder xpctank_instr_export in the extraction root folder.
- **6** Connect the target computer to the computer that is compatible with Windows. Restart the target computer.

Check that the target computer loads the Simulink Real-Time kernel and the real-time application.

7 Double-click runxpctank_instr_export.exe.

To interact with the real-time application on the target computer, use the executable interface.

• If a signal is accessible, you can add a scope and attach the signal to the scope. Scopes that you add and remove do not change the model.

• If you remove a window, you can restore it by clicking **File > Restore Original View**.

See Also

More About

• "Instrumentation for Real-Time Applications" on page 4-2

Simulink Real-Time Explorer Instruments

GaugeAngular Properties

Graphic instrument to display signal values

Description

Use the GaugeAngular instrument to display real-valued data suitable for an angular gauge, such as pressure, speed, and current. When you bind a GaugeAngular instrument to a signal with enum type data values, the enumerated values appear as units on the instrument scale. The enumerated values are visible when you run the instrument panel. For more information, see "Add Instrument Panel to Tank Model" on page 4-33.

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button **D**.

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

ScaleDisplay — Subset of scale display properties property group

Open a dialog box to configure the scale display.

Auto — Automatic generator display properties

property group

To set properties of the automatic display generator, under the **Generator** tab, click the **Auto** tab.

Mid Included — Insert tick midway between major ticks

False (default) | True

If **MinorCount** is even, space the minor ticks equally around the center tick. If **MinorCount** is odd, replace the center tick with the middle tick.

Fixed Min/Max Majors — Constrain top and bottom tick values

False (default) | True

If True, the top and bottom ticks are constrained as major ticks with min/max values defined by **Min** and **Span**.

Minor Count — Number of minor ticks between major ticks 4 (default) | numeric

Min Text Spacing — Minimum space between scale ticks 1 (default) | numeric

Desired Increment — Display of major tick labels

0 (default) | numeric

The number of labels is span / (increment + 1). If the required labels do not fit in the space available in the graphic, this setting has no effect.

Text Formatting — Text display properties

property group

To set text formatting properties, click the **Text Formatting** tab.

Style — Style of tick display
Number (default) | Thousands | Prefix | Exponent | Price32nds | DateTime |
DateTimeUTC

Precision Style — Style of expressing precision

FixedDecimalPoints (default) | SignificantDigits | None

Precision — Number of digits to the right of the decimal point

0 (default) | numeric

Units Text — Text to add to number

text

Open a text editor and construct text to add to number. By default, the units text appears to the right of the number. If **Style** is **Prefix**, the text appears to the left of the number.

ScaleRange — Subset of scale range properties

property group

Specify range of control scale. The properties **Max** and **AngleMax** are calculated from **Min**, **Span**, **AngleMin**, and **AngleSpan**.

Min — Minimum possible value

0 (default) | numeric

Span — Number of values between the minimum and maximum values 100 (default) | numeric

100 (default) | numeric

Reverse — Reverse scale direction

False (default) | True

By default, the instrument displays values that increase in the customary directions: Clockwise, left to right, or down to up, depending on the instrument. If value is True, reverse the scale so that the values increase in the opposite directions: Counterclockwise, right to left, or up to down.

Scale Type — Scale type: linear, logarithmic, or split

Linear(default) | Log10 | SplitLinearLog10

Scale type, one of:

- Linear Monotonic increasing or decreasing
- Log10 Log base 10 increasing or decreasing
- SplitLinearLog10 Monotonic increasing or decreasing in one part, log base 10 in the other part

Angle Min — Starting point of scale, in degrees from bottom of circle

180 (default) | numeric

Angle Span — Number of degrees from minimum to full deflection

90 (default) | numeric

Design

Locked — Lock control against design-mode changes

False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

Bindings

BindingSrcPath — Name of signal or parameter

text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType — Type of object to which the instrument is bound

None (default) | Parameter | Signal

Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

$\ensuremath{\mbox{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mbox{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2 "Add Instrument Panel to Tank Model" on page 4-33

GaugeFluidLevel Properties

Graphic instrument to display values of fluid sensor signals

Description

Use the GaugeFluidLevel instrument to display real-valued data suitable for a fluid gauge, such as volume and pressure. When you bind a GaugeFluidLevel instrument to a signal with enum type data values, the enumerated values appear as units on the instrument scale. The enumerated values are visible when you run the instrument panel. For more information, see "Add Instrument Panel to Tank Model" on page 4-33.

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button \mathbf{D} .

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

ScaleDisplay — Subset of scale display properties

property group

Open a dialog box to configure the scale display.

Auto — Automatic generator display properties

property group

To set properties of the automatic display generator, under the **Generator** tab, click the **Auto** tab.

Mid Included — Insert tick midway between major ticks

False (default) | True

If **MinorCount** is even, space the minor ticks equally around the center tick. If **MinorCount** is odd, replace the center tick with the middle tick.

Fixed Min/Max Majors — Constrain top and bottom tick values

False (default) | True

If True, the top and bottom ticks are constrained to be major ticks with min/max values defined by **Min** and **Span**.

Minor Count — Number of minor ticks between major ticks 4 (default) | numeric

Min Text Spacing — Minimum space between scale ticks 1 (default) | numeric

Desired Increment — Display of major tick labels

0 (default) | numeric

The number of labels is span / (desired increment + 1). This setting has no effect if the required labels do not fit in the space available in the graphic.

Text Formatting — Text display properties

property group

To set text formatting properties, click the **Text Formatting** tab.

Style — Style of tick display

Number (default) | Thousands | Prefix | Exponent | Price32nds | DateTime | DateTimeUTC

Precision Style — Style of expressing precision

FixedDecimalPoints (default) | SignificantDigits | None

Precision — Number of digits to the right of the decimal point

0 (default) | numeric

Units Text — Text to add to number

text

Open a text editor and construct text to add to number. By default, the units text appears to the right of the number. If **Style** is **Prefix**, the text appears to the left of the number.

ScaleRange — Subset of scale range properties

property group

Specify range of control scale. The property **Max** is calculated from **Min** and **Span**.

Min — Minimum possible value

0 (default) | numeric

Span — Number of values between the minimum and maximum values 100 (default) | numeric

Reverse — Reverse scale direction

False (default) | True

By default, the instrument displays values that increase in the customary directions: Clockwise, left to right, or down to up, depending on the instrument. If value is True, reverse the scale so that the values increase in the opposite directions: Counterclockwise, right to left, or up to down.

Scale Type — Scale type: linear, logarithmic, or split

Linear (default) | Log10 | SplitLinearLog10

Scale type, one of:

- Linear Monotonic increasing or decreasing
- Log10 Log base 10 increasing or decreasing

 SplitLinearLog10 — Monotonic increasing or decreasing in one part, log base 10 in the other part

Tube — Subset of tube display properties property group

Open a dialog box to configure the tube display.

Width — Width of tube graphic 50 (default) | integer

Horizontal dimension of tube graphic, in pixels

Wall Thickness — Thickness of tube wall 0 (default) | integer

Edge thickness of tube wall, in pixels

Fill Color — Color of active portion of tube DeepSkyBlue (default) | struct

Open a dialog box with these tabs:

Custom — Customizable color grid struct

Web — List of web colors struct

Struct

System — List of system colors struct

Wall Color — Color of inactive portion of tube White Smoke (default) | struct

Open a dialog box with these tabs:

Custom — Customizable color grid
struct

Web — List of web colors struct

System — List of system colors struct

Alignment — Alignment of tube graphic AutoCenter (default) | Side | Center

Horizontal position of the tube within the frame.

Design

Locked — Lock control against design-mode changes False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

Bindings

BindingSrcPath — Name of signal or parameter

text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType – Type of object to which the instrument is bound

None (default) | Parameter | Signal

Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

TargetName — Name of target computer to which the control is connected

text

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

"Add Instrument Panel to Tank Model" on page 4-33 \mid "Add Instrument Panel to Tank Model" on page 4-33

Topics


"Instrumentation for Real-Time Applications" on page 4-2

GaugeLinear Properties

Graphic instrument to display signal values

Description

Use the GaugeLinear instrument to display real-valued data suitable for a linear gauge, such as temperature, volume, and pressure. When you bind a GaugeLinear instrument to a signal with enum type data values, the enumerated values appear as units on the instrument scale. The enumerated values are visible when you run the instrument panel. For more information, see "Add Instrument Panel to Tank Model" on page 4-33.

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button **D**.

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

ScaleDisplay — Subset of scale display properties

property group

Open a dialog box to configure the scale display.

Auto — Automatic generator display properties

property group

To set properties of the automatic display generator, under the **Generator** tab, click the **Auto** tab.

Mid Included — Insert tick midway between major ticks

False (default) | True

If **MinorCount** is even, space the minor ticks equally around the center tick. If **MinorCount** is odd, replace the center tick with the middle tick.

Fixed Min/Max Majors — Constrain top and bottom tick values

False (default) | True

If True, the top and bottom ticks are constrained to be major ticks with min/max values defined by **Min** and **Span**.

Minor Count — Number of minor ticks between major ticks 4 (default) | numeric

Min Text Spacing — Minimum space between scale ticks 1 (default) | numeric

Desired Increment — Display of major tick labels

0 (default) | numeric

The number of labels is span / (desired increment + 1). This setting has no effect if the required labels do not fit in the space available in the graphic.

Text Formatting — Text display properties

property group

To set text formatting properties, click the **Text Formatting** tab.

Style — Style of tick display

Number (default) | Thousands | Prefix | Exponent | Price32nds | DateTime | DateTimeUTC

Precision Style — Style of expressing precision

FixedDecimalPoints (default) | SignificantDigits | None

Precision — Number of digits to the right of the decimal point

0 (default) | numeric

Units Text — Text to add to number

text

Open a text editor and construct text to add to number. By default, the units text appears to the right of the number. If **Style** is **Prefix**, the text appears to the left of the number.

ScaleRange — Subset of scale range properties

property group

Specify range of control scale. The property **Max** is calculated from **Min** and **Span**.

Min — Minimum possible value

0 (default) | numeric

Span — Number of values between the minimum and maximum values 100 (default) | numeric

Reverse — Reverse scale direction

False (default) | True

By default, the instrument displays values that increase in the customary directions: Clockwise, left to right, or down to up, depending on the instrument. If value is True, reverse the scale so that the values increase in the opposite directions: Counterclockwise, right to left, or up to down.

Scale Type — Scale type: linear, logarithmic, or split

Linear (default) | Log10 | SplitLinearLog10

Scale type, one of:

- Linear Monotonic increasing or decreasing
- Log10 Log base 10 increasing or decreasing

• SplitLinearLog10 — Monotonic increasing or decreasing in one part, log base 10 in the other part

Design

Locked — Lock control against design-mode changes

False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

Bindings

BindingSrcPath — Name of signal or parameter

text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType — **Type of object to which the instrument is bound** None (default) | Parameter | Signal

Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

$\ensuremath{\mathsf{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mathsf{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2

GroupBox Properties

Nonscrollable graphical container for instruments

Description

The **GroupBox** graphical layout element provides a container for other instruments. At design time, you can stretch and shrink the container.

-GroupPoy -	
GroupBox -	

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Design

Locked — Lock control against design-mode changes

False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

See Also

Topics "Instrumentation for Real-Time Applications" on page 4-2

HexadecimalDisplay Properties

Instrument to display signal values

Description

The **HexadecimalDisplay** instrument displays numeric data in hexadecimal format. This instrument is used for digital data, such as status codes and register contents.

88888

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button **D**.

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

DigitCount — Number of hex digits to display

6 (default) | numeric

Specify a number that is consistent with the width of the signal that the instrument displays.

DigitLeadingStyle — Fill digits to display

None (default) | Zeros

• None — Fill digits are blanks.

• Zeros — Fill digits are zeroes.

Design

Locked — Lock control against design-mode changes

False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

Bindings

BindingSrcPath — Name of signal or parameter

text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType — **Type of object to which the instrument is bound** None (default) | Parameter | Signal

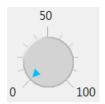
Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

$\ensuremath{\mathsf{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mathsf{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

Topics


"Instrumentation for Real-Time Applications" on page 4-2

Knob Properties

Graphic instrument to set parameter values

Description

Use the **Knob** instrument to set real-valued data such as amplitude and frequency when an exact value is not required. When you bind a **Knob** instrument to a parameter with enum type data values, the enumerated values appear as units on the instrument scale. The enumerated values are visible when you run the instrument panel. For more information, see "Add Instrument Panel to Tank Model" on page 4-33.

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button **•**.

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

OffSwitch — Knob on/off switch configuration parameter group Open the parameter group list to set the off switch parameters.

Enable — Use the knob to turn off parameter

False (default) | True

To enable the knob to turn off the underlying parameter, set **Enabled** to True. A dot at the extreme low end of the range shows the status of the parameter.

0n — Initial state of the off switch

False (default) | True

If True, the switch is initially turned on.

ColorOn — **Color of indicator when switch is on** DarkSeaGreen (default) | struct

Open a dialog box with these tabs:

Custom — Customizable color grid struct

Web — List of web colors struct

System — List of system colors struct

ColorOff — Color of indicator when switch is off

LightCoral (default) | struct

Open a dialog box with these tabs:

Custom — Customizable color grid
struct

Web — List of web colors struct

System — List of system colors struct

ScaleDisplay — Subset of scale display properties property group

Open a dialog box to configure the scale display.

Auto — Automatic generator display properties

property group

To set properties of the automatic display generator, under the **Generator** tab, click the **Auto** tab.

Mid Included — Insert tick midway between major ticks

False (default) | True

If **MinorCount** is even, space the minor ticks equally around the center tick. If **MinorCount** is odd, replace the center tick with the middle tick.

Fixed Min/Max Majors — Constrain top and bottom tick values

False (default) | True

If True, the top and bottom ticks are constrained to be major ticks with min/max values defined by **Min** and **Span**.

Minor Count — Number of minor ticks between major ticks 4 (default) | numeric

Min Text Spacing — Minimum space between scale ticks 1 (default) | numeric

Desired Increment — Display of major tick labels

0 (default) | numeric

The number of labels is span / (desired increment + 1). This setting does nothing if the required labels do not fit in the space available in the graphic.

Text Formatting — Text display properties

property group

To set text formatting properties, click the **Text Formatting** tab.

Style — Style of tick display
Number (default) | Thousands | Prefix | Exponent | Price32nds | DateTime |
DateTimeUTC

Precision Style — Style of expressing precision
FixedDecimalPoints (default) | SignificantDigits | None

Precision — Number of digits to the right of the decimal point

0 (default) | numeric

Units Text — Text to add to number

text

Open a text editor and construct text to add to number. By default, the units text appears to the right of the number. If **Style** is **Prefix**, the text appears to the left of the number.

ScaleRange — Subset of scale range properties

property group

Specify range of control scale. The properties **Max** and **AngleMax** are calculated from **Min**, **Span**, **AngleMin**, and **AngleSpan**.

Min — Minimum possible value

0 (default) | numeric

Span — Number of values between the minimum and maximum values

100 (default) | numeric

Reverse – Reverse scale direction

False (default) | True

By default, the instrument displays values that increase in the customary directions: Clockwise, left to right, or down to up, depending on the instrument. If value is True, reverse the scale so that the values increase in the opposite directions: Counterclockwise, right to left, or up to down.

Scale Type — Scale type: linear, logarithmic, or split

Linear(default) | Log10 | SplitLinearLog10

Scale type, one of:

- Linear Monotonic increasing or decreasing
- Log10 Log base 10 increasing or decreasing
- SplitLinearLog10 Monotonic increasing or decreasing in one part, log base 10 in the other part

Angle Min — Starting point of scale, in degrees from bottom of circle

180 (default) | numeric

$\label{eq:Angle Span} \textbf{Angle Span} - \textbf{Number of degrees from minimum to full deflection}$

90 (default) | numeric

Design

Locked — Lock control against design-mode changes

False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

Bindings

BindingSrcPath — Name of signal or parameter text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType — **Type of object to which the instrument is bound** None (default) | Parameter | Signal

Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

$\ensuremath{\mbox{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mbox{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2

Label Properties

Graphical container for text

Description

Use the **Label** graphical layout element to add text to the instrument layout.

Label

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

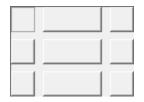
continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Appearance

Text — Defines text displayed by label character vector | string scalar


Type the label display text into the **Text** box.

TextAlign — Defines alignment of text displayed by the label

TopLeft (default) | TopCenter | TopRight | MiddleLeft | MiddleCenter | MiddleRight | BottomLeft | BottomCenter | BottomRight

Specifies left-to-right and top-to-bottom alignment with a 3x3 matrix.

This display represents setting TopLeft.

Design

Locked — Lock control against design-mode changes

False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2 "Add Instrument Panel to Tank Model" on page 4-33 "Triggering Scope Instruments"

LED Properties

Graphic instrument to display binary signal values

Description

Use the **LED** instrument to display binary (1 or 0) data.

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button **•**.

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

BlinkerEnable — Cause LED to blink continuously False (default) | True

To cause the LED to blink continuously, set to True.

Indicator — Subset of indicator display properties property group

Open a dialog box to configure the indicator display.

Active Color — Color of indicator when signal is 1 DeepSkyBlue (default) | struct Open a dialog box with these tabs:

Custom — Customizable color grid
struct

Web — List of web colors

struct

System — List of system colors struct

Inactive Color — Color of indicator when signal is 0
[41,41,41] (default) | struct

Open a dialog box with these tabs:

Custom — Customizable color grid struct

Web — List of web colors struct

System — List of system colors struct

Design

Locked — Lock control against design-mode changes False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

Bindings

BindingSrcPath — Name of signal or parameter

text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType — Type of object to which the instrument is bound

None (default) | Parameter | Signal

Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

$\ensuremath{\mbox{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mbox{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2

NumericDisplay Properties

Instrument to display signal values

Description

0

Use the NumericDisplay instrument to display real-valued numeric data.

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button **•**.

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

Text Formatting — Text display properties property group

To set text formatting properties, click the **Text Formatting** tab.

Style — Style of tick display Number (default) | Thousands | Prefix | Exponent | Price32nds | DateTime | DateTimeUTC

Precision Style — Style of expressing precision
FixedDecimalPoints (default) | SignificantDigits | None

Precision — Number of digits to the right of the decimal point

0 (default) | numeric

Units Text — Text to add to number

text

Open a text editor and construct text to add to number. By default, the units text appears to the right of the number. If **Style** is Prefix, the text appears to the left of the number.

Design

Locked — Lock control against design-mode changes

False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

Bindings

BindingSrcPath — Name of signal or parameter

text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType — Type of object to which the instrument is bound

None (default) | Parameter | Signal

Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

$\ensuremath{\mbox{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mbox{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2

NumericEntry Properties

Instrument to set parameter values

Description

Use the **NumericEntry** instrument to enter real-valued data in specified formats when an exact value is required.

0

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button **D**.

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

Text Formatting — Text display properties property group

To set text formatting properties, click the **Text Formatting** tab.

Style — Style of tick display Number (default) | Thousands | Prefix | Exponent | Price32nds | DateTime | DateTimeUTC

Precision Style — Style of expressing precision
FixedDecimalPoints (default) | SignificantDigits | None

Precision — Number of digits to the right of the decimal point

0 (default) | numeric

Units Text — Text to add to number

text

Open a text editor and construct text to add to number. By default, the units text appears to the right of the number. If **Style** is **Prefix**, the text appears to the left of the number.

Design

Locked — Lock control against design-mode changes

False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

Bindings

BindingSrcPath — Name of signal or parameter

text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType — Type of object to which the instrument is bound

None (default) | Parameter | Signal

Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

$\ensuremath{\mathsf{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mathsf{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2

Introduced in R2014a

NumericUpDownEntry Properties

Instrument to set parameter values

Description

Use the **NumericUpDownEntry** instrument to enter real-valued data and increment it by a specified amount when a step change is required.

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button \mathbf{P} .

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Data

DecimalPlaces — Number of decimal places to display

0 (default) | integer

The default display is an integer (0 decimal places).

Increment — Value change per arrow click

1 (default) | numeric

Value to add or subtract in response to an up-arrow or down-arrow.

Maximum — Maximum data value

100 (default) | numeric

Values greater than the maximum are set to the maximum.

Minimum — Minimum data value

0 (default) | numeric

Values less than the minimum are set to the minimum.

Design

Locked — Lock control against design-mode changes False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

Bindings

BindingSrcPath — Name of signal or parameter

text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType — Type of object to which the instrument is bound

None (default) | Parameter | Signal

Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

$\ensuremath{\mathsf{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mathsf{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2

Introduced in R2014a

Panel Properties

Scrollable graphical container for instruments

Description

The **Panel** graphical layout element provides a container for other instruments. At design time, you can stretch and shrink the container.

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button \mathbf{P} .

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Design

Locked — Lock control against design-mode changes False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2

Introduced in R2014a

PictureBox Properties

Graphical display for pictures

Description

The **PictureBox** graphical display element presents graphics in bitmap, GIF, JPEG, and PNG format. At design time, you can stretch and shrink the display.

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button **D**.

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Asynchronous

ImageLocation — Path name of image character vector | string scalar

Enter the full or relative path to the image.

Behavior

SizeMode — Policy for sizing image relative to instrument Normal (default) | StretchImage | AutoSize | CenterImage | Zoom

- Normal Image full size, can be cut off by edges of instrument
- StretchImage Image stretched in the x and y directions, matching instrument aspect ratio
- AutoSize Image full size, instrument changes dimensions to match the image
- CenterImage Image full size, centered in instrument, can be cut off by edges of instrument
- Zoom Image stretched in the x and y directions, preserving image aspect ratio

Design

Locked — Lock control against design-mode changes

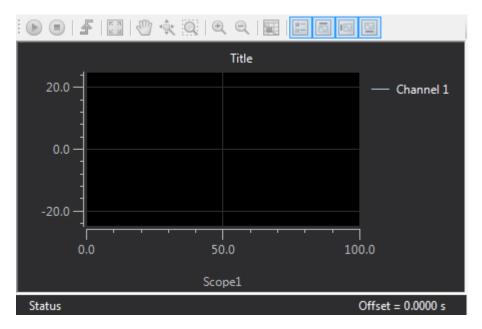
False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2


Introduced in R2014a

Scope Properties

Graphic instrument to display waveforms

Description

Use the Scope instrument to display time-varying real-valued data, such as electronic waveforms.

The block provides controls that you can access at run time.

Action	lcon	Purpose
Start Acquisition	\bigcirc	Enables the scope to trigger.
Stop Acquisition		Prevents the scope from triggering.
Force trigger	Ł	Triggers an immediate acquisition.

Action	lcon	Purpose
AutoScale	к а 2 м	Rescales the scope axes to display the full range of the values.
Axis Scroll	3	Enables dragging the visible portion of the axes left, right, up, and down.
Axis Zoom	ŵ	Enables stretching the axes left, right, up, and down.
Zoom Box	Q	Enables selecting a box into which the display zooms.
Zoom In	Ð	Zooms the display inward from the current center.
Zoom Out	Q	Zooms the display outward from the current center.
Data-Cursor		Creates a cursor that shows value and time data.
Show Legend		Displays the signal names and the colors of the signal traces in the top, right corner of the scope display.
Show Label		Displays the scope label in the top center of the scope display.
Show Y-Axis	1 Ea	Displays the Y-axis to the left of the scope display.
Show X-Axis		Displays the X-axis on the bottom of the scope display.

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button \blacktriangleright .

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

NumSamples — Number of contiguous samples that the scope displays

500 (default) | integer

The number of samples determines how much data the scope displays at any one time. The larger this value, the longer the scope takes to refresh.

PreTriggerViewing — **Percentage of samples that the scope captures before a trigger event**

0 (default) | integer

This property determines the horizontal (time axis) position of the trigger event in the display.

TriggerLevel — Level at which a signal trigger becomes active

0 (default) | integer

When the trigger signal crosses this value in the direction that you specified in **TriggerSlope**, the trigger becomes active.

Dependency

This property takes effect only if TriggerSource is SIGNAL.

TriggerMode — Scope update policy

SINGLESHOT (default) | REPEATED

Specify how often the display is updated:

- **SINGLESHOT** Triggers once and stops the scope. To recapture, manually restart the scope.
- REPEATED Triggers every time that the trigger condition is satisfied. To stop the display, manually stop the scope.

TriggerScope — Name of triggering scope

text

Specify the scope from which this instance of the scope instrument triggers.

Dependency

This property takes effect only if **TriggerSource** is SCOPE.

TriggerSignal — Name of triggering signal

text

Specify the signal from which this instance of the scope instrument triggers.

Dependency

This property takes effect only if TriggerSource is SIGNAL.

TriggerSlope — Slope of signal waveform that triggers this scope EITHER (default) | RISING | FALLING

Specify the crossing direction at which the trigger becomes active:

- EITHER Triggers when the signal rises and when it falls.
- RISING Triggers only when the signal rises.
- FALLING Triggers only when the signal falls.

Specify the crossing value with property TriggerLevel.

Dependency

This property takes effect only if **TriggerSource** is SIGNAL.

TriggerSource — Source of trigger event

FREERUN (default) | MANUAL | SIGNAL | SCOPE

Specify the trigger condition:

- FREERUN Displays data continuously without waiting for a trigger.
- MANUAL Triggers when you click the Force trigger button \oint .
- SIGNAL Triggers when a specific signal crosses a specific value in a rising or falling direction.
- SCOPE Triggers when a specified scope is triggered.

Dependency

This parameter has these dependencies:

- When **TriggerSource** is MANUAL, the **Force trigger** button \oint becomes available.
- When **TriggerSource** is **SIGNAL**, properties **TriggerSignal**, **TriggerSlope**, and **TriggerLevel** take effect.
- When TriggerSource is SCOPE, property TriggerScope takes effect.

YAxesLimits — Positive and negative limits of Y-axis

max-min pair

Specify **Max** and **Min** limits to the Y-axis of the display.

Bindings

Signals — List of signals that are connected to scope instrument

list of signal names

Enter signal names by using the Signal Collection Editor, which contains a **Members** list and a **Properties** list.

Example: SetPoint, ControlValue, TankLevel

$\ensuremath{\mathsf{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mathsf{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

Design

Locked — Lock control against design-mode changes

False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

See Also

Topics

"View Signal Waveforms with Scope Instrument" on page 4-20

"View Signal Waveforms with Signal Triggered Scope Instrument" on page 4-28

"Triggering Scope Instruments"

"Instrumentation for Real-Time Applications" on page 4-2

Introduced in R2017a

Slider Properties

Graphic instrument to set parameter values

Description

Use the **Slider** instrument to set the approximate value of real-valued data, such as voltage or current. When you bind a **Slider** instrument to a parameter with enum type data values, the enumerated values appear as units on the instrument scale. The enumerated values are visible when you run the instrument panel. For more information, see "Add Instrument Panel to Tank Model" on page 4-33.

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button \mathbf{D} .

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

ScaleDisplay — Subset of scale display properties

property group

Open a dialog box to configure the scale display.

Auto — Automatic generator display properties

property group

To set properties of the automatic display generator, under the **Generator** tab, click the **Auto** tab.

Mid Included — Insert tick midway between major ticks

False (default) | True

If **MinorCount** is even, space the minor ticks equally around the center tick. If **MinorCount** is odd, replace the center tick with the middle tick.

Fixed Min/Max Majors — Constrain top and bottom tick values

False (default) | True

If True, the top and bottom ticks are constrained to be major ticks with min/max values defined by **Min** and **Span**.

Minor Count — Number of minor ticks between major ticks 4 (default) | numeric

Min Text Spacing — Minimum space between scale ticks

1 (default) | numeric

Desired Increment — Display of major tick labels

0 (default) | numeric

The number of labels is span / (desired increment + 1). This setting has no effect if the required labels do not fit in the space available in the graphic.

Text Formatting — Text display properties

property group

To set text formatting properties, click the **Text Formatting** tab.

Style — Style of tick display

Number (default) | Thousands | Prefix | Exponent | Price32nds | DateTime | DateTimeUTC

Precision Style — Style of expressing precision

FixedDecimalPoints (default) | SignificantDigits | None

Precision — Number of digits to the right of the decimal point

0 (default) | numeric

Units Text — Text to add to number

text

Open a text editor and construct text to add to number. By default, the units text appears to the right of the number. If **Style** is **Prefix**, the text appears to the left of the number.

ScaleRange — Subset of scale range properties

property group

Specify range of control scale. The property **Max** is calculated from **Min** and **Span**.

Min — Minimum possible value

0 (default) | numeric

Span — Number of values between the minimum and maximum values 100 (default) | numeric

Reverse — **Reverse** scale direction

False (default) | True

By default, the instrument displays values that increase in the customary directions: Clockwise, left to right, or down to up, depending on the instrument. If value is True, reverse the scale so that the values increase in the opposite directions: Counterclockwise, right to left, or up to down.

Scale Type — Scale type: linear, logarithmic, or split

Linear (default) | Log10 | SplitLinearLog10

Scale type, one of:

- Linear Monotonic increasing or decreasing
- Log10 Log base 10 increasing or decreasing

• SplitLinearLog10 — Monotonic increasing or decreasing in one part, log base 10 in the other part

Design

Locked — Lock control against design-mode changes

False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

Bindings

BindingSrcPath — Name of signal or parameter

text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType — Type of object to which the instrument is bound

None (default) | Parameter | Signal

Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

$\ensuremath{\mathsf{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mathsf{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

Topics

"View Signal Waveforms with Scope Instrument" on page 4-20 "View Signal Waveforms with Signal Triggered Scope Instrument" on page 4-28 "Add Instrument Panel to Tank Model" on page 4-33 "Triggering Scope Instruments"

"Instrumentation for Real-Time Applications" on page 4-2

Introduced in R2014a

SwitchLED Properties

Graphic instrument to set binary parameter values

Description

Use the **SwitchLED** instrument to set a binary (1 or 0) value.

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button **D**.

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

BackgroundOffValueImage — Background image when switch is off

(none) | file path

Open a file navigator dialog box to specify a graphic file name. When the switch goes to the value 0 (off), the switch displays this image as background.

BackgroundOnValueImage — Background image when switch is on (none) | file path

When the switch goes to the value 1 (on), the switch displays this image as background.

Indicator — Subset of indicator display properties

property group

Open a dialog box to configure the indicator display.

ColorActive — **Indicator color when switch is on** DeepSkyBlue (default) | struct

Open a dialog box with these tabs:

Custom — Customizable color grid
struct

Web — List of web colors struct

System — List of system colors struct

ColorInactive — Indicator color when switch is off [41,41,41] (default) | struct

Open a dialog box with these tabs:

Custom — Customizable color grid
struct

Web — List of web colors struct

System — List of system colors struct

Text — Text on switch body ON (default) | text

Enter text to add to appear on switch body

Design

Locked — Lock control against design-mode changes False (default) | True When True, prevents accidental changes in size or location of the instrument instance.

Misc

BindingSrcPath — Name of signal or parameter

text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType — Type of object to which the instrument is bound

None (default) | Parameter | Signal

Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

$\ensuremath{\mbox{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mbox{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2

Introduced in R2014a

SwitchLever Properties

Graphic instrument to set binary parameter values

Description

Use the SwitchLever instrument to set a binary (1 or 0) value.

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button \mathbf{P} .

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

Switch — Subset of switch display properties
property group

Open a dialog box to configure the switch display.

ColorBase — **Color palette of switch base graphic** Control (default) | struct

Open a dialog box with these tabs:

Custom — Customizable color grid

Web — List of web colors struct

System — List of system colors struct

ColorLever — **Color palette of switch lever graphic** Control (default) | struct

Open a dialog box with these tabs:

Custom — Customizable color grid

struct

Web — List of web colors

struct

System — List of system colors struct

Design

Locked — Lock control against design-mode changes

False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

Misc

BindingSrcPath — Name of signal or parameter

text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType — Type of object to which the instrument is bound

None (default) | Parameter | Signal

Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

$\ensuremath{\mbox{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mbox{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2

Introduced in R2017b

SwitchRocker Properties

Graphic instrument to set binary parameter values

Description

Use the **SwitchRocker** instrument to set a binary (1 or 0) value.

		_		
	-	-	-	
L	-	_	_	
L	-	_	-	
L	-	-	-	

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button **D**.

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

Indicator — Subset of indicator display properties property group

Open a property group to configure the indicator display.

ColorActive — **Color of indicator when switch is on** DeepSkyBlue (default) | struct

Open a dialog box with these tabs:

Custom — Customizable color grid struct

Web — List of web colors struct

System — List of system colors struct

ColorInactive — Color of indicator when switch is off [41,41,41] (default) | struct

Open a dialog box with these tabs:

Custom — Customizable color grid
struct

Web — List of web colors struct

System — List of system colors struct

Switch — Subset of switch display properties
property group

Open a dialog box to configure the switch display.

Color — Color palette of switch graphic Control (default) | struct

Open a dialog box with these tabs:

Custom — Customizable color grid
struct

Web — List of web colors struct

System — List of system colors struct

Bevel - Switch bevel line properties

struct

Open a dialog box to configure the lines on the movable part of the switch.

Visible — Make bevel lines visible

True (default) | False

If True, the bevel lines are visible, otherwise they are not visible.

Style — 3-D appearance of bevel lines

Raised (default) | Sunken | None

- Raised Bevel lines lie on top of the surface.
- Sunken Bevel lines lie below the surface.
- None Bevel lines are not visible.,

Thickness — Thickness of bevel lines

X3 (default) | X2 | X4

Thickness of bevel lines, in pixels.

Margin Edge — Space around bevel lines

3 (default) | integer

Space around bevel lines, in pixels.

Design

Locked — Lock control against design-mode changes False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

Misc

BindingSrcPath — Name of signal or parameter

text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType — **Type of object to which the instrument is bound** None (default) | Parameter | Signal Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

$\ensuremath{\mbox{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mbox{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2

Introduced in R2017b

SwitchToggle Properties

Graphic instrument to set binary parameter values

Description

Use the **SwitchToggle** instrument to set a binary (1 or 0) value.

E				
L				
L				
L				_
E	-	_	_	-1
L	-	_	-	-1
	-	-	-	-1

To access a dialog box containing key instrument or layout element properties, select the item. In the top, right corner, click the **Tasks** button \mathbf{P} .

To access the complete **Properties** list for an instrument or layout element, in the instrument panel, select the item. In the **Properties** list, to access a dialog box for a particular property group, click the group. To the right of the group, click the

continuation button

These properties represent a selection from the available properties. For more properties, see "Graphical Properties" on page 4-11.

Properties

Instrument

Switch — Subset of switch display properties

property group

Open a dialog box to configure the switch display.

Height — Height of changing part of switch graphic

50 (default) | 10 \leq uint \leq 90

Enter an integer value with the percentage of the switch frame that is covered by the changing part of the graphic. Values below 10% or above 90% produce an error.

Bevel - Switch bevel line properties

struct

Open a dialog box to configure the lines on the movable part of the switch.

Visible — Make bevel lines visible

True (default) | False

If True, the bevel lines are visible, otherwise they are not visible.

Style — 3-D appearance of bevel lines

Raised (default) | Sunken | None

- Raised Bevel lines lie on top of the surface.
- Sunken Bevel lines lie below the surface.
- None Bevel lines are not visible.,

Thickness — Thickness of bevel lines

X3 (default) | X2 | X4

Thickness of bevel lines, in pixels.

Margin Edge — Space around bevel lines

3 (default) | integer

Space around bevel lines, in pixels.

Design

Locked — Lock control against design-mode changes False (default) | True

When True, prevents accidental changes in size or location of the instrument instance.

Misc

BindingSrcPath — Name of signal or parameter

text

Specify the hierarchical name of the signal or parameter that is bound to the instrument.

BindingSrcType — **Type of object to which the instrument is bound** None (default) | Parameter | Signal Specify the type of object to which the instrument is bound. The Signal binding is visible only for display instruments.

$\ensuremath{\mbox{TargetName}}$ — Name of target computer to which the control is connected $\ensuremath{\mbox{text}}$

Bind an instrument instance to a particular target computer. You can bind different instruments in the same instrument panel to different target computers.

See Also

Topics

"Instrumentation for Real-Time Applications" on page 4-2

Introduced in R2017b

Target Computer Command-Line Interface Reference

Target Computer Commands

You can interact with the real-time application after it has been loaded to the target computer by using a limited set of target computer commands.

- Function commands Interact directly with the scope or target.
- Property commands Work with target and scope properties.
- Variable commands Alias target computer command-line interface commands with names of your choice.

Refer to "Control Real-Time Application at Target Computer Command Line" for a description of how to use these functions and commands.

To read the target computer console log, call SimulinkRealTime.utils.getConsoleLog.

Target Object Function Commands

When you are using the target computer command-line interface, target object functions are limited to starting and stopping the real-time application.

The following table lists the syntax for the target commands that you can use on the target computer. The equivalent MATLAB syntax is shown in the right column. The target object name tg is used as an example for the MATLAB functions. These functions assume that you have already loaded the real-time application onto the target computer.

Target Computer Command	Description	MATLAB Equivalent
start	Start the real-time application currently loaded on the target computer.	start(tg)
stop	Stop the real-time application currently running on the target computer.	stop(tg)
reboot	Restart the target computer.	reboot(tg)

Target Object Property Commands

When you are using the target computer command-line interface, target object properties are limited to parameters, signals, stop time, and sample time.

The following table lists the syntax for the target commands that you can use to manipulate target object properties. The MATLAB equivalent syntax is shown in the right column, and the target object name tg is used as an example for the MATLAB functions.

To read signal and parameter and signal values, use signal and parameter names (for example, S1, P1). To both read and write parameter values, use parameter indexes (for example, 0, 1).

Target Computer Command	Description	MATLAB Equivalent
getpar param_index	Display the value of a block parameter using the parameter index.	getparam(tg, param_index)
setpar param_index = number	Change the value of a block parameter using the parameter index.	<pre>setparam(tg, param_index, number)</pre>
stoptime = number	With the value number, run for the specified number of seconds.	<pre>tg.StopTime = number tg.StopTime = Inf</pre>
stoptime = Inf	With the value Inf, run the real- time application until you manually stop it or reset the target computer.	
sampletime = number	Enter a new sample time.	tg.SampleTime = number
P#	Display the value of the block parameter with index #.	<pre>getparam(tg, param_index)</pre>
	For example, P2 displays the value of block parameter 2.	

Target Computer Command	Description	MATLAB Equivalent
S#	Display the value of the signal with index #. For example, S2 displays the	<pre>getsignal(tg, sig_index)</pre>
	For example, S2 displays the value of signal 2.	

Scope and Video Object Function Commands

When using the target computer command-line interface, you use scope object functions to start a scope and add signal traces. You can also collapse scopes and video displays into icons and expand them again. The functions addscope and remscope are target object functions that also run on the development computer.

The following table lists the syntax for the target commands that you can use on the target computer. The MATLAB equivalent syntax is shown in the right column. The target object name tg and the scope object name sc are used as an example for the MATLAB functions.

To add and remove scopes, use scope numbers (for example, 0, 1) and not scope names (for example, Scope 1, Scope 2). To add and remove signals from scopes, use signal indexes (for example, 0, 1) and not signal names (for example, S0, S1).

Target Computer Command	Description	MATLAB Equivalent
addscope	Without an argument, add a target scope and assign it the	addscope(tg, 'target')
addscope scope_index	next available index.	addscope(tg, 'target', scope_index)
	With argument scope_index, add a target scope and assign it index scope_index.	

Target Computer Command	Description	MATLAB Equivalent
remscope scope_index	With value scope_index, remove scope scope_index.	<pre>remscope(tg, scope_index) remscope(tg)</pre>
remscope all	With value all, remove all scopes.	
<pre>startscope scope_index</pre>	With value scope_index, start the scope with index scope index.	<pre>start(sc) start(getscope(tg))</pre>
startscope all	With value all, start all scopes.	
<pre>stopscope scope_index</pre>	With value scope_index, stop the scope with index scope index.	<pre>stop(sc) stop(getscope(tg))</pre>
stopscope all	With value all, stop all scopes.	5.00 (90.00000 (1977)
<pre>addsignal scope_index = sig_index1, sig_index2,</pre>	With values sig_index1, sig_index2,, add the signals with these signal indexes to the scope with index scope_index.	addsignal(sc, sig_index_vector)
<pre>remsignal scope_index = sig_index1, sig_index2, remsignal</pre>	With values sig_index1, sig_index2,, remove the signals with these signal indexes from the scope with index scope_index.	<pre>remsignal(sc, sig_index_vector) remsignal(sc)</pre>
scope_index	Without a sig_index value, remove all the signals from the scope with index scope_index.	
show Scope scope_index	With value <pre>scope_index, expand scope <pre>scope_index from an icon.</pre></pre>	
hide Scope scope_index	With value scope_index, collapse scope scope_index into an icon.	

Target Computer Command	Description	MATLAB Equivalent
show Video video_index	With value video_index, expand video display video_index from an icon.	
hide Video video_index	With value video_index, collapse video display video_index into an icon.	

Scope Object Property Commands

When you use the target computer command-line interface, scope object properties are limited to the properties shown in the following table.

The following table lists the syntax for the target properties that you can set on the target computer. The equivalent MATLAB syntax is shown in the right column. The scope object name sc is used as an example for the MATLAB functions.

To change scope properties, use scope indexes (for example, 0, 1) and not scope names (for example, Scope 1, Scope 2).

Target Computer Command	Description	MATLAB Equivalent
<pre>numsamples scope_index = number</pre>	Set the number of contiguous samples captured by scope scope_index to number.	sc.NumSamples = number
<pre>decimation scope_index = 1 decimation scope_index = number</pre>	With value 1, the scope returns all sample points. With value <i>n</i> , the scope returns every <i>n</i> th sample point.	<pre>sc.Decimation = 1 sc.Decimation = number</pre>

If a scope is running, stop the scope before you change a scope property.

Target Computer Command	Description	MATLAB Equivalent
grid scope_index off	With value on, the scope grid display is visible. With value off, the scope grid display is not visible.	sc.Grid = 'on' sc.Grid = 'off'
<pre>scopemode scope_index = 0 scopemode scope_index = numerical scopemode scope_index = 1 scopemode scope_index = redraw scopemode scope_index = 3 scopemode scope_index = numerical</pre>	With value 0 or numerical, scope scope_index displays signal values as text. With value 1 or redraw, scope scope_index plots signal values when numsamples samples have been acquired. With value 3 or rolling, scope scope_index plots signal values at every sample time. Value 2, sliding, will be removed in a future release. It behaves like value 3,	<pre>sc.DisplayMode = 'numerical' sc.DisplayMode = 'redraw' sc.DisplayMode = 'rolling'</pre>

Target Computer Command	Description	MATLAB Equivalent
<pre>Command triggermode scope_index = 0 triggermode scope_index = freerun triggermode scope_index = 1 triggermode scope_index = software triggermode scope_index = 2</pre>	With value 0 or freerun, scope scope_index triggers on every sample time. With value 1 or software, scope scope_index triggers from Command Window. With value 2 or signal, scope scope_index triggers when a designated signal changes state.	<pre>sc.TriggerMode = 'freerun' sc.TriggerMode = 'software' sc.TriggerMode = 'signal' sc.TriggerMode = 'scope'</pre>
<pre>triggermode scope_index = signal triggermode scope_index = 3 triggermode scope_index = scope</pre>	With value 3 or scope, scope scope_index triggers when a designated scope triggers.	
<pre>numprepostsamples scope_index = number</pre>	Number of samples collected before or after a trigger event.	<pre>sc.NumPrePostSamples = number</pre>
triggersignal scope_index = sig_index	If triggermode is signal, triggersignal identifies the block output signal to use for triggering the scope.	<pre>sc.TriggerSignal = sig_index</pre>
<pre>triggersample scope_index = number</pre>	If triggermode is scope, triggersample specifies which sample of the triggering scope the current scope triggers on.	sc.TriggerSample = number

Target Computer Command	Description	MATLAB Equivalent
<pre>triggerlevel scope_index = number</pre>	If triggermode is signal, triggerlevel indicates the value the signal has to cross to trigger the scope to start acquiring data.	sc.TriggerLevel = number
<pre>triggerslope scope_index = 0 triggerslope scope_index = either triggerslope scope_index = 1 triggerslope scope_index = rising triggerslope scope_index = 2 triggerslope scope_index = falling</pre>	If triggermode is signal: With value 0 or either, the signal triggers the scope when it crosses triggerlevel in either the rising or falling directions. With value 1 or rising, the signal triggers the scope when it crosses triggerlevel in the rising direction. With value 2 or falling, the signal triggers the scope when it crosses triggerlevel in the falling direction.	<pre>sc.TriggerSlope = 'Either' sc.TriggerSlope = 'Rising' sc.TriggerSlope = 'Falling'</pre>
<pre>triggerscope scope_index = scope_index2</pre>	If triggermode is scope, triggerscope identifies the scope to use for a trigger.	<pre>sc.TriggerScope = scope_index2</pre>
triggerscopesample scope_index= integer	If triggermode is scope, triggerscopesample specifies which sample of the triggering scope to trigger on.	<pre>sc.TriggerScopeSample = integer</pre>

Target Computer Command	Description	MATLAB Equivalent
<pre>ylimit scope_index = min_y, max_y ylimit scope_index = auto</pre>	With value min_y, max_y, change the lower and upper y-axis values to min_y and max_y. With value auto, the values being displayed determine the lower and upper y-axis values.	sc.YLimit = [min_y, max_y] sc.YLimit = 'auto'

Aliasing with Variable Commands

You can set a variable to a command character vector, and later use that variable to execute that command. For example, type the following on the target computer command line:

setvar aa = startscope 2
setvar bb = stopscope 2

Later, to start and stop scope 2, you can type the following:

aa bb

The following table lists the syntax for the aliasing variable commands that you can use only on the target computer. MATLAB does not provide equivalent syntax. For a usage example, see "Alias Commands at Target Computer Command Line".

Target Computer Command	Description
setvar variable_name = command	Set a variable to a target computer command-line character vector.
getvar variable_name	Display the value of a variable.
delvar variable_name	Delete a variable.
delallvar	Delete all variables.
showvar	Display a list of variables.

See Also

SimulinkRealTime.utils.getConsoleLog

Simulink Real-Time Performance Advisor Checks

- "Simulink Real-Time Performance Advisor Checks" on page 7-2
- "Baseline" on page 7-4
- "System Target File Compatibility" on page 7-5
- "Profiling Settings" on page 7-6
- "Check Target" on page 7-7
- "Real-Time Performance Baseline" on page 7-8
- "Determine minimum sample time" on page 7-9
- "Real-Time" on page 7-10
- "Outport Logging" on page 7-11
- "EtherCAT Synchronous SDO" on page 7-12
- "Concurrent execution" on page 7-13
- "Final Validation" on page 7-14

Simulink Real-Time Performance Advisor Checks

Parameter	Description
"Baseline" on page 7-4	Checks preconditions for real-time execution, and then measures its initial performance to establish a baseline.
"System Target File Compatibility" on page 7-5	Checks that the system target file is compatible with the real-time advisor workflow.
"Profiling Settings" on page 7-6	Checks that the execution profiling settings are compatible with the real-time advisor workflow.
"Check Target" on page 7-7	Pings the target computer and verifies that it is in a clean state.
"Real-Time Performance Baseline" on page 7-8	Collects execution-time measurements and establishes a performance baseline.
"Determine minimum sample time" on page 7-9	To determine the minimum sample time possible for the model, this check iteratively runs the model, decreasing the sample time on each run. The algorithm stops at a sample time that is greater than a sample time that can cause an overload.
"Real-Time" on page 7-10	Checks the real-time application and application setup, and recommends changes to improve performance.
"Outport Logging" on page 7-11	Checks for the use of Outport blocks for data logging. Data logging using Outport blocks can slow down execution.
"EtherCAT Synchronous SDO" on page 7- 12	Checks for the use of EtherCAT Synchronous SDO blocks. EtherCAT Synchronous SDO blocks can slow down execution.
"Concurrent execution" on page 7-13	Checks if you can perform concurrent execution of the real-time application on a multicore target computer.

Parameter	Description
	Validates the overall performance improvement that your changes make in real-time execution time and accuracy.

Use Performance Advisor checks to improve real-time application execution time. Performance Advisor runs the check and only provides recommendations. It does not modify your model.

To get help on an option

- **1** Right-click the option text label.
- 2 From the context menu, select What's This.

- "Improve Performance of Multirate Model"
- "Improve Simulation Performance Using Performance Advisor" (Simulink)

Baseline

Checks preconditions for real-time execution, and then measures its initial performance to establish a baseline.

Performance Advisor later uses this baseline to compare performance before and after you implement the improvements that Performance Advisor recommends.

- "Improve Performance of Multirate Model"
- "Performance Optimization"
- "Improve Simulation Performance Using Performance Advisor" (Simulink)

System Target File Compatibility

Checks that the system target file is compatible with the real-time advisor workflow.

In the Configuration Parameters **Code Generation** pane, set the **System target file** setting to slrt.tlc.

- "Improve Performance of Multirate Model"
- "Set Configuration Parameters"
- "Performance Optimization"
- "Improve Simulation Performance Using Performance Advisor" (Simulink)

Profiling Settings

Checks that the execution profiling settings are compatible with the real-time advisor workflow.

In the Configuration Parameters **Verification** pane, select the **Measure task execution time** check box.

- "Improve Performance of Multirate Model"
- "Performance Optimization"
- "Improve Simulation Performance Using Performance Advisor" (Simulink)

Check Target

Pings the target computer and verifies that it is in a clean state.

To clear the target computer of prior simulations, select the **Automatically unload any loaded application** check box.

- "Improve Performance of Multirate Model"
- "Performance Optimization"
- "Improve Simulation Performance Using Performance Advisor" (Simulink)

Real-Time Performance Baseline

Collects execution-time measurements and establishes a performance baseline.

This check builds, downloads, and executes the real-time application on the target computer. When the check passes, it displays the following information:

• Margin before CPU overload (0% indicates CPU overload) — A table containing the real-time application task name, the sample rate, and the margin.

Margin is the minimum value of headroom for a task over all the measured samples.

Headroom is the time between the end of execution and the start of the next sample, as a percentage of sample time. For example, if the sample time is 1.2 ms and a task takes 0.93 ms to execute, the headroom is (1.2 - 0.93)/1.2, or 22.5%.

As the margin approaches 0%, the application gets closer to overloading the CPU.

• Average CPU Usage — A pie chart showing the average CPU resources that the realtime application uses, as a percentage of available resources.

The available CPU resources include all of the processors on a multicore target computer. For example, a single-tasking model running on a quad-core processor cannot exceed 25% CPU usage.

The background task aggregates the CPU time for all operating system tasks that are not related to application execution. These tasks include updating the target screen, communicating with the development computer, and so on. It also includes the time that the CPU is idle.

- "Improve Performance of Multirate Model"
- "Performance Optimization"
- "Improve Simulation Performance Using Performance Advisor" (Simulink)

Determine minimum sample time

To determine the minimum sample time possible for the model, this check iteratively runs the model, decreasing the sample time on each run. The algorithm stops at a sample time that is greater than a sample time that can cause an overload.

Random factors such as network latency can change the minimum sample time of a model. As a best practice, set the sample time for your model to a value greater than the minimum sample time returned by this check.

This check builds, downloads, and executes the real-time application.

- "Improve Performance of Multirate Model"
- "Performance Optimization"
- "Improve Simulation Performance Using Performance Advisor" (Simulink)

Real-Time

Checks the real-time application and application setup, and recommends changes to improve performance.

- "Improve Performance of Multirate Model"
- "Performance Optimization"
- "Improve Simulation Performance Using Performance Advisor" (Simulink)

Outport Logging

Checks for the use of Outport blocks for data logging. Data logging using Outport blocks can slow down execution.

As an alternative, consider using a real-time Scope block configured as a file scope.

- "Improve Performance of Multirate Model"
- Scope
- "Performance Optimization"
- "Improve Simulation Performance Using Performance Advisor" (Simulink)

EtherCAT Synchronous SDO

Checks for the use of EtherCAT Synchronous SDO blocks. EtherCAT Synchronous SDO blocks can slow down execution.

As an alternative, consider using EtherCAT Asynchronous SDO blocks.

- "Improve Performance of Multirate Model"
- "EtherCAT"
- "Performance Optimization"
- "Improve Simulation Performance Using Performance Advisor" (Simulink)

Concurrent execution

Checks if you can perform concurrent execution of the real-time application on a multicore target computer.

To perform concurrent execution:

- Acquire a multicore target computer.
- In the Configuration Parameters **Solver** pane, select the **Allow tasks to execute concurrently on target** check box.

This check updates the model diagram.

- "Improve Performance of Multirate Model"
- "Concurrent Execution with Multicore Target Computer"
- "Performance Optimization"
- "Improve Simulation Performance Using Performance Advisor" (Simulink)

Final Validation

Validates the overall performance improvement that your changes make in real-time execution time and accuracy.

If you have not validated the performance improvement resulting from other checks, use this check to perform a final validation of the changes to the model.

This check builds, downloads, and executes the real-time application. When the check passes, it displays the following information for the baseline and final validation runs:

• Margin before CPU overload (0% indicates CPU overload) — A table containing, for each run, the real-time application task name, the sample rate, and the margin.

Margin is the minimum value of headroom for a task over all the measured samples.

Headroom is the time between the end of execution and the start of the next sample, as a percentage of sample time. For example, if the sample time is 1.2 ms and a task takes 0.93 ms to execute, the headroom is (1.2 - 0.93)/1.2, or 22.5%.

As the margin approaches 0%, the application gets closer to overloading the CPU.

• Average CPU Usage — Pie charts showing, for each run, the average CPU resources that the real-time application uses, as a percentage of available resources.

The available CPU resources include all of the processors on a multicore target computer. For example, a single-tasking model running on a quad-core processor cannot exceed 25% CPU usage.

The background task aggregates the CPU time for all operating system tasks that are not related to application execution. These tasks include updating the target screen, communicating with the development computer, and so on. It also includes the time that the CPU is idle.

- "Improve Performance of Multirate Model"
- "Performance Optimization"
- "Improve Simulation Performance Using Performance Advisor" (Simulink)
- "Comparing Performance" (Simulink)